2,077 research outputs found

    Antiferromagnetic s-d exchange coupling in GaMnAs

    Full text link
    Measurements of coherent electron spin dynamics in Ga(1-x)Mn(x)As/Al(0.4)Ga(0.6)As quantum wells with 0.0006% < x < 0.03% show an antiferromagnetic (negative) exchange bewteen s-like conduction band electrons and electrons localized in the d-shell of the Mn2+ impurities. The magnitude of the s-d exchange parameter, N0 alpha, varies as a function of well width indicative of a large and negative contribution due to kinetic exchange. In the limit of no quantum confinement, N0 alpha extrapolates to -0.09 +/- 0.03 eV indicating that antiferromagnetic s-d exchange is a bulk property of GaMnAs. Measurements of the polarization-resolved photoluminescence show strong discrepancy from a simple model of the exchange enhanced Zeeman splitting, indicative of additional complexity in the exchange split valence band.Comment: 5 pages, 4 figures and one action figur

    Feedback cooling of a cantilever's fundamental mode below 5 mK

    Full text link
    We cool the fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature of 2.2 K to 2.9 +/- 0.3 mK using active optomechanical feedback. The lowest observed mode temperature is consistent with limits determined by the properties of the cantilever and by the measurement noise. For high feedback gain, the driven cantilever motion is found to suppress or "squash" the optical interferometer intensity noise below the shot noise level.Comment: 4 pages, 6 figure

    Nuclear spin relaxation induced by a mechanical resonator

    Full text link
    We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magneto-mechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magneto-mechanical noise.Comment: 4 pages, 4 figure

    Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    Get PDF
    As the number of spins in an ensemble is reduced, the statistical uctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer- scale ensembles of nuclear spins in a KPF6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble

    Force-detected nuclear double resonance between statistical spin polarizations

    Full text link
    We demonstrate nuclear double resonance for nanometer-scale volumes of spins where random fluctuations rather than Boltzmann polarization dominate. When the Hartmann-Hahn condition is met in a cross-polarization experiment, flip-flops occur between two species of spins and their fluctuations become coupled. We use magnetic resonance force microscopy to measure this effect between 1H and 13C spins in 13C-enriched stearic acid. The development of a cross-polarization technique for statistical ensembles adds an important tool for generating chemical contrast in nanometer-scale magnetic resonance.Comment: 14 pages, 4 figure

    Local Manipulation of Nuclear Spin in a Semiconductor Quantum Well

    Get PDF
    The shaping of nuclear spin polarization profiles and the induction of nuclear resonances are demonstrated within a parabolic quantum well using an externally applied gate voltage. Voltage control of the electron and hole wave functions results in nanometer-scale sheets of polarized nuclei positioned along the growth direction of the well. RF voltages across the gates induce resonant spin transitions of selected isotopes. This depolarizing effect depends strongly on the separation of electrons and holes, suggesting that a highly localized mechanism accounts for the observed behavior.Comment: 18 pages, 4 figure

    Deferring the learning for better generalization in radial basis neural networks

    Get PDF
    Proceeding of: International Conference Artificial Neural Networks — ICANN 2001. Vienna, Austria, August 21–25, 2001The level of generalization of neural networks is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to be approximated. In this paper, we present a learning method that automatically selects the most appropriate training patterns to the new sample to be predicted. The proposed method has been applied to Radial Basis Neural Networks, whose generalization capability is usually very poor. The learning strategy slows down the response of the network in the generalisation phase. However, this does not introduces a significance limitation in the application of the method because of the fast training of Radial Basis Neural Networks

    Gluon Condensate and Beyond

    Get PDF
    We review briefly and in retrospect the development which brought about the QCD sum rules based on introduction of the gluon condensate (M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov (1978)).Comment: 15 pages, 5 figures, uses sprocl.sty (included). The 1999 Sakurai Prize Lectur
    • …
    corecore