2,077 research outputs found
Antiferromagnetic s-d exchange coupling in GaMnAs
Measurements of coherent electron spin dynamics in
Ga(1-x)Mn(x)As/Al(0.4)Ga(0.6)As quantum wells with 0.0006% < x < 0.03% show an
antiferromagnetic (negative) exchange bewteen s-like conduction band electrons
and electrons localized in the d-shell of the Mn2+ impurities. The magnitude of
the s-d exchange parameter, N0 alpha, varies as a function of well width
indicative of a large and negative contribution due to kinetic exchange. In the
limit of no quantum confinement, N0 alpha extrapolates to -0.09 +/- 0.03 eV
indicating that antiferromagnetic s-d exchange is a bulk property of GaMnAs.
Measurements of the polarization-resolved photoluminescence show strong
discrepancy from a simple model of the exchange enhanced Zeeman splitting,
indicative of additional complexity in the exchange split valence band.Comment: 5 pages, 4 figures and one action figur
Feedback cooling of a cantilever's fundamental mode below 5 mK
We cool the fundamental mechanical mode of an ultrasoft silicon cantilever
from a base temperature of 2.2 K to 2.9 +/- 0.3 mK using active optomechanical
feedback. The lowest observed mode temperature is consistent with limits
determined by the properties of the cantilever and by the measurement noise.
For high feedback gain, the driven cantilever motion is found to suppress or
"squash" the optical interferometer intensity noise below the shot noise level.Comment: 4 pages, 6 figure
Nuclear spin relaxation induced by a mechanical resonator
We report on measurements of the spin lifetime of nuclear spins strongly
coupled to a micromechanical cantilever as used in magnetic resonance force
microscopy. We find that the rotating-frame correlation time of the statistical
nuclear polarization is set by the magneto-mechanical noise originating from
the thermal motion of the cantilever. Evidence is based on the effect of three
parameters: (1) the magnetic field gradient (the coupling strength), (2) the
Rabi frequency of the spins (the transition energy), and (3) the temperature of
the low-frequency mechanical modes. Experimental results are compared to
relaxation rates calculated from the spectral density of the magneto-mechanical
noise.Comment: 4 pages, 4 figure
Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble
As the number of spins in an ensemble is reduced, the statistical uctuations
in its polarization eventually exceed the mean thermal polarization. This
transition has now been surpassed in a number of recent nuclear magnetic
resonance experiments, which achieve nanometer-scale detection volumes. Here,
we measure nanometer- scale ensembles of nuclear spins in a KPF6 sample using
magnetic resonance force microscopy. In particular, we investigate the
transition between regimes dominated by thermal and statistical nuclear
polarization. The ratio between the two types of polarization provides a
measure of the number of spins in the detected ensemble
Force-detected nuclear double resonance between statistical spin polarizations
We demonstrate nuclear double resonance for nanometer-scale volumes of spins
where random fluctuations rather than Boltzmann polarization dominate. When the
Hartmann-Hahn condition is met in a cross-polarization experiment, flip-flops
occur between two species of spins and their fluctuations become coupled. We
use magnetic resonance force microscopy to measure this effect between 1H and
13C spins in 13C-enriched stearic acid. The development of a cross-polarization
technique for statistical ensembles adds an important tool for generating
chemical contrast in nanometer-scale magnetic resonance.Comment: 14 pages, 4 figure
Local Manipulation of Nuclear Spin in a Semiconductor Quantum Well
The shaping of nuclear spin polarization profiles and the induction of
nuclear resonances are demonstrated within a parabolic quantum well using an
externally applied gate voltage. Voltage control of the electron and hole wave
functions results in nanometer-scale sheets of polarized nuclei positioned
along the growth direction of the well. RF voltages across the gates induce
resonant spin transitions of selected isotopes. This depolarizing effect
depends strongly on the separation of electrons and holes, suggesting that a
highly localized mechanism accounts for the observed behavior.Comment: 18 pages, 4 figure
Deferring the learning for better generalization in radial basis neural networks
Proceeding of: International Conference Artificial Neural Networks — ICANN 2001. Vienna, Austria, August 21–25, 2001The level of generalization of neural networks is heavily dependent on the quality of the training data. That is, some of the training patterns can be redundant or irrelevant. It has been shown that with careful dynamic selection of training patterns, better generalization performance may be obtained. Nevertheless, generalization is carried out independently of the novel patterns to be approximated. In this paper, we present a learning method that automatically selects the most appropriate training patterns to the new sample to be predicted. The proposed method has been applied to Radial Basis Neural Networks, whose generalization capability is usually very poor. The learning strategy slows down the response of the network in the generalisation phase. However, this does not introduces a significance limitation in the application of the method because of the fast training of Radial Basis Neural Networks
Gluon Condensate and Beyond
We review briefly and in retrospect the development which brought about the
QCD sum rules based on introduction of the gluon condensate (M.A. Shifman, A.I.
Vainshtein, and V.I. Zakharov (1978)).Comment: 15 pages, 5 figures, uses sprocl.sty (included). The 1999 Sakurai
Prize Lectur
- …