5 research outputs found

    COVID-19 Detection from Mass Spectra of Exhaled Breath

    Full text link
    According to the World Health Organization, the SARS-CoV-2 virus generated a global emergency between 2020 and 2023 resulting in about 7 million deaths out of more than 750 million individuals diagnosed with COVID-19. During these years, polymerase-chain-reaction and antigen testing played a prominent role in disease control. In this study, we propose a fast and non-invasive detection system exploiting a proprietary mass spectrometer to measure ions in exhaled breath. We demonstrated that infected individuals, even if asymptomatic, exhibit characteristics in the air expelled from the lungs that can be detected by a nanotech-based technology and then recognized by soft-computing algorithms. A clinical trial was ran on about 300 patients: the mass spectra in the 10-351 mass-to-charge range were measured, suitably pre-processed, and analyzed by different classification models; eventually, the system shown an accuracy of 95% and a recall of 94% in identifying cases of COVID-19. With performances comparable to traditional methodologies, the proposed system could play a significant role in both routine examination for common diseases and emergency response for new epidemics.Comment: 15 page

    Privileged Scaffold Decoration for the Identification of the First Trisubstituted Triazine with Anti-SARS-CoV-2 Activity

    Get PDF
    : Current therapy against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are based on the use of Remdesivir 1, Molnupiravir 2, and the recently identified Nirmatrelvir 3. Unfortunately, these three drugs showed some limitations regarding potency and possible drug-drug interactions. A series of derivatives coming from a decoration approach of the privileged scaffold s-triazines were synthesized and evaluated against SAR-CoV-2. One derivative emerged as the hit of the series for its micromolar antiviral activity and low cytotoxicity. Mode of action and pharmacokinetic in vitro preliminary studies further confirm the role as candidates for a future optimization campaign of the most active derivative identified with this work. © 2022 by the authors

    Biological Evaluation and In Vitro Characterization of ADME Profile of In-House Pyrazolo[3,4-<i>d</i>]pyrimidines as Dual Tyrosine Kinase Inhibitors Active against Glioblastoma Multiforme

    Get PDF
    The therapeutic use of tyrosine kinase inhibitors (TKIs) represents one of the successful strategies for the treatment of glioblastoma (GBM). Pyrazolo[3,4-d]pyrimidines have already been reported as promising small molecules active as c-Src/Abl dual inhibitors. Herein, we present a series of pyrazolo[3,4-d]pyrimidine derivatives, selected from our in-house library, to identify a promising candidate active against GBM. The inhibitory activity against c-Src and Abl was investigated, and the antiproliferative profile against four GBM cell lines was studied. For the most active compounds endowed with antiproliferative efficacy in the low-micromolar range, the effects toward nontumoral, healthy cell lines (fibroblasts FIBRO 2-93 and keratinocytes HaCaT) was investigated. Lastly, the in silico and in vitro ADME properties of all compounds were also assessed. Among the tested compounds, the promising inhibitory activity against c-Src and Abl (Ki 3.14 µM and 0.44 µM, respectively), the irreversible, apoptotic-mediated death toward U-87, LN18, LN229, and DBTRG GBM cell lines (IC50 6.8 µM, 10.8 µM, 6.9 µM, and 8.5 µM, respectively), the significant reduction in GBM cell migration, the safe profile toward FIBRO 2-93 and HaCaT healthy cell lines (CC50 91.7 µM and 126.5 µM, respectively), the high metabolic stability, and the excellent passive permeability across gastrointestinal and blood–brain barriers led us to select compound 5 for further in vivo assays

    Biological Evaluation and In Vitro Characterization of ADME Profile of In-House Pyrazolo[3,4-d]pyrimidines as Dual Tyrosine Kinase Inhibitors Active against Glioblastoma Multiforme

    No full text
    The therapeutic use of tyrosine kinase inhibitors (TKIs) represents one of the successful strategies for the treatment of glioblastoma (GBM). Pyrazolo[3,4-d]pyrimidines have already been reported as promising small molecules active as c-Src/Abl dual inhibitors. Herein, we present a series of pyrazolo[3,4-d]pyrimidine derivatives, selected from our in-house library, to identify a promising candidate active against GBM. The inhibitory activity against c-Src and Abl was investigated, and the antiproliferative profile against four GBM cell lines was studied. For the most active compounds endowed with antiproliferative efficacy in the low-micromolar range, the effects toward nontumoral, healthy cell lines (fibroblasts FIBRO 2-93 and keratinocytes HaCaT) was investigated. Lastly, the in silico and in vitro ADME properties of all compounds were also assessed. Among the tested compounds, the promising inhibitory activity against c-Src and Abl (Ki 3.14 &micro;M and 0.44 &micro;M, respectively), the irreversible, apoptotic-mediated death toward U-87, LN18, LN229, and DBTRG GBM cell lines (IC50 6.8 &micro;M, 10.8 &micro;M, 6.9 &micro;M, and 8.5 &micro;M, respectively), the significant reduction in GBM cell migration, the safe profile toward FIBRO 2-93 and HaCaT healthy cell lines (CC50 91.7 &micro;M and 126.5 &micro;M, respectively), the high metabolic stability, and the excellent passive permeability across gastrointestinal and blood&ndash;brain barriers led us to select compound 5 for further in vivo assays

    Efficient optimization of pyrazolo[3,4-d]pyrimidines derivatives as c-Src kinase inhibitors in neuroblastoma treatment

    No full text
    The proto-oncogene c-Src is a non-receptor tyrosine kinase which is involved in the regulation of many cellular processes, such as differentiation, adhesion and survival. c-Src hyperactivation has been detected in many tumors, including neuroblastoma (NB), one of the major causes of death from neoplasia in infancy. We already reported a large family of pyrazolo[3,4-d]pyrimidines active as c-Src inhibitors. Interestingly, some of these derivatives resulted also active on SH-SY5Y NB cell line. Herein, starting from our previous Free Energy Perturbation/Monte Carlo calculations, we report an optimization study which led to the identification of a new series of derivatives endowed with nanomolar Ki values against c-Src, interesting antiproliferative activity on SH-SY5Y cells and a suitable ADME profile
    corecore