352 research outputs found

    Bioleaching of Pyrite by Iron-Oxidizing Acidophiles under the Influence of Reactive Oxygen Species

    Get PDF
    After 24h of exposure to acidic media, pyrite generates reactive oxygen species (ROS). Freshly-crushed pyrite with grain sizes between 50-100 μm at a 5 % (w/v), pulp density generated 0.17 ± 0.01 mM H2O2, while 10% pyrite generated 0.29 ± 0.01 mM and 30 % pyrite generated approximately 0.83 ± 0.06 mM. These levels of H2O2 inhibit iron oxidation in iron-grown cells of AcidithiobacillusferrooxidansT but not in pyrite-grown cells. ROS originating from pyrite, which was incubated for 24 h in acidic medium, prohibited pyrite dissolution by iron-grown cells, while pyrite-grown cells were adapted to these concentrations of ROS. Periodical addition of 100 μM H2O2 to pyrite cultures inoculated with pyrite-grown cells did not lower iron dissolution as it was observed with iron-grown cells. By high throughput proteomics analysis, an increased expression of proteins related to oxidative stress management, iron-and sulfur oxidation systems, carbon fixation and biofilm formation was observed in biofilm cells grown on pyrite compared to iron-grown cells.</jats:p

    From protons to OXPHOS supercomplexes and Alzheimer's disease: Structure–dynamics–function relationships of energy-transducing membranes

    Get PDF
    AbstractBy the elucidation of high-resolution structures the view of the bioenergetic processes has become more precise. But in the face of these fundamental advances, many problems are still unresolved. We have examined a variety of aspects of energy-transducing membranes from large protein complexes down to the level of protons and functional relevant picosecond protein dynamics. Based on the central role of the ATP synthase for supplying the biological fuel ATP, one main emphasis was put on this protein complex from both chloroplast and mitochondria. In particular the stoichiometry of protons required for the synthesis of one ATP molecule and the supramolecular organisation of ATP synthases were examined. Since formation of supercomplexes also concerns other complexes of the respiratory chain, our work was directed to unravel this kind of organisation, e.g. of the OXPHOS supercomplex I1III2IV1, in terms of structure and function. Not only the large protein complexes or supercomplexes work as key players for biological energy conversion, but also small components as quinones which facilitate the transfer of electrons and protons. Therefore, their location in the membrane profile was determined by neutron diffraction. Physico-chemical features of the path of protons from the generators of the electrochemical gradient to the ATP synthase, as well as of their interaction with the membrane surface, could be elucidated by time-resolved absorption spectroscopy in combination with optical pH indicators. Diseases such as Alzheimer's dementia (AD) are triggered by perturbation of membranes and bioenergetics as demonstrated by our neutron scattering studies

    Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism

    Get PDF
    Dihydrotestosterone (DHT) has acute/non-genomic actions in adult mammalian skeletal muscles whose physiological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the acute/non-genomic effects of DHT on amino acid uptake as well as the cellular signal transduction events underlying these actions in mouse fast- and slow-twitch skeletal muscle fibre bundles. 14C-Labelled amino acids were used to investigate the effects of DHT and testosterone (T) on amino acid uptake and pharmacological interventions were used to determine the cellular signal transduction events mediating these actions. While T had no effect on the uptake of isoleucine (Ile) and a-methylaminoisobutyric acid (MeAIB) in both fibre types, DHT increased their uptake in the fast-twitch fibre bundles. This effect was reversed by inhibitors of protein translation, the epidermal growth factor receptor (EGFR), system A, system L, mTOR and MEK. However, it was relatively insensitive to inhibitors of transcription, androgen receptors and PI3K/Akt. Additionally, DHT treatment increased the expression of LAT2 and the phosphorylation of the EGFR in the fast-twitch fibre bundles and that of ERK1/2, RSK1/2 and ATF2 in both fibre types. Also, it decreased the phosphorylation of eEF2 and increased the incorporation of Ile into proteins in both fibre types. Most of these effects were reversed by EGFR and MEK inhibitors. From these findings we suggest that another physiological function of the acute/non-genomic actions of DHT in isolated mammalian skeletal muscle fibres is to stimulate amino acid uptake. This effect is mediated through the EGFR and involves the activation of the MAPK pathway and an increase in LAT2 expression

    Target-Specific Precision of CRISPR-Mediated Genome Editing

    Get PDF
    The CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms. However, our ability to predict the editing outcome at specific sites is limited. Here, we examined indel profiles at over 1,000 genomic sites in human cells and uncovered general principles guiding CRISPR-mediated DNA editing. We find that precision of DNA editing (i.e., recurrence of a specific indel) varies considerably among sites, with some targets showing one highly preferred indel and others displaying numerous infrequent indels. Editing precision correlates with editing efficiency and a preference for single-nucleotide homologous insertions. Precise targets and editing outcome can be predicted based on simple rules that mainly depend on the fourth nucleotide upstream of the protospacer adjacent motif (PAM). Indel profiles are robust, but they can be influenced by chromatin features. Our findings have important implications for clinical applications of CRISPR technology and reveal general patterns of broken end joining that can provide insights into DNA repair mechanisms

    Haloferax volcanii Proteome Response to Deletion of a Rhomboid Protease Gene

    Get PDF
    Rhomboids are conserved intramembrane serine proteases involved in cell signaling processes. Their role in prokaryotes is scarcely known and remains to be investigated in <i>Archaea</i>. We previously constructed a rhomboid homologue deletion mutant (Δ<i>rhoII</i>) in <i>Haloferax volcanii</i>, which showed reduced motility, increased novobiocin sensitivity, and an N- glycosylation defect. To address the impact of <i>rhoII</i> deletion on <i>H. volcanii</i> physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. A total of 1847 proteins were identified (45.8% of <i>H. volcanii</i> predicted proteome), from which 103 differed in amount. Additionally, the mutant strain evidenced 99 proteins with altered electrophoretic migration, which suggested differential post-translational processing/modification. Integral membrane proteins that evidenced variations in concentration, electrophoretic migration, or semitryptic cleavage in the mutant were considered as potential RhoII targets. These included a PrsW protease homologue (which was less stable in the mutant strain), a predicted halocyanin, and six integral membrane proteins potentially related to the mutant glycosylation (S-layer glycoprotein, Agl15) and cell adhesion/motility (flagellin1, HVO_1153, PilA1, and PibD) defects. This study investigated for the first time the impact of a rhomboid protease on the whole proteome of an organism

    LonB Protease Is a Novel Regulator of Carotenogenesis Controlling Degradation of Phytoene Synthase in Haloferax volcanii

    Get PDF
    Cerletti M, Paggi R, Troetschel C, et al. LonB Protease Is a Novel Regulator of Carotenogenesis Controlling Degradation of Phytoene Synthase in Haloferax volcanii. JOURNAL OF PROTEOME RESEARCH. 2018;17(3):1158-1171.The membrane protease LonB is an essential protein in the archaeon Haloferax volcanii and globally impacts its physiology. However, natural substrates of the archaeal Lon protease have not been identified. The whole proteome turnover was examined in a H. volcanii LonB mutant under reduced and physiological protease levels. LC-MS/MS combined with stable isotope labeling was applied for the identification/quantitation of membrane and cytoplasm proteins. Differential synthesis and degradation rates were evidenced for 414 proteins in response to Lon expression. A total of 58 proteins involved in diverse cellular processes showed a degradation pattern (none/very little degradation in the absence of Lon and increased degradation in the presence of Lon) consistent with a LonB substrate, which was further substantiated for several of these candidates by pull-down assays. The most notable was phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthesis. The rapid degradation of PSY upon LonB induction in addition to the remarkable stabilization of this protein and hyperpigmentation phenotype in the Lon mutant strongly suggest that PSY is a LonB substrate. This work identifies for the first time candidate targets of the archaeal Lon protease and establishes proteolysis by Lon as a novel post-translational regulatory mechanism of carotenogenesis

    Weak Iron Oxidation by Sulfobacillus thermosulfidooxidans Maintains a Favorable Redox Potential for Chalcopyrite Bioleaching

    Get PDF
    Bioleaching is an emerging technology, describing the microbially assisted dissolution of sulfidic ores that provides a more environmentally friendly alternative to many traditional metal extraction methods, such as roasting or smelting. Industrial interest is steadily increasing and today, circa 15–20% of the world’s copper production can be traced back to this method. However, bioleaching of the world’s most abundant copper mineral chalcopyrite suffers from low dissolution rates, often attributed to passivating layers, which need to be overcome to use this technology to its full potential. To prevent these passivating layers from forming, leaching needs to occur at a low oxidation/reduction potential (ORP), but chemical redox control in bioleaching heaps is difficult and costly. As an alternative, selected weak iron-oxidizers could be employed that are incapable of scavenging exceedingly low concentrations of iron and therefore, raise the ORP just above the onset of bioleaching, but not high enough to allow for the occurrence of passivation. In this study, we report that microbial iron oxidation by Sulfobacillus thermosulfidooxidans meets these specifications. Chalcopyrite concentrate bioleaching experiments with S. thermosulfidooxidans as the sole iron oxidizer exhibited significantly lower redox potentials and higher release of copper compared to communities containing the strong iron oxidizer Leptospirillum ferriphilum. Transcriptomic response to single and co-culture of these two iron oxidizers was studied and revealed a greatly decreased number of mRNA transcripts ascribed to iron oxidation in S. thermosulfidooxidans when cultured in the presence of L. ferriphilum. This allowed for the identification of genes potentially responsible for S. thermosulfidooxidans’ weaker iron oxidation to be studied in the future, as well as underlined the need for new mechanisms to control the microbial population in bioleaching heaps

    A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary

    Full text link
    In this paper we propose a method of finding the initial equilibrium configuration of cable structures discretized by finite elements applied to the shape-finding of the railway overhead system. Absolute nodal coordinate formulation finite elements, which allow for axial and bending deformation, are used for the contact and messenger wires. The other parts of the overhead system are discretized with non-linear bars or equivalent springs. The proposed method considers the constraints introduced during the assembly of the catenary, such as the position of droppers, cable tension, and height of the contact wire. The formulation is general and can be applied to different catenary configurations or transitions both in 2D and 3D with straight or curved track paths. A comparison of the results obtained for reference catenaries in the bibliography is also included.The authors wish to thank Generatitat Valenciana for the financial support received in the framework of the Programme PROME-TEO 2012/023.Tur Valiente, M.; García, E.; Baeza González, LM.; Fuenmayor Fernández, FJ. (2014). A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Engineering Structures. 71:234-243. https://doi.org/10.1016/j.engstruct.2014.04.015S2342437
    • …
    corecore