44 research outputs found

    The role of the ubiquitination-proteasome pathway in breast cancer: Applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer

    Get PDF
    The ubiquitin-proteasome pathway is responsible for most eukaryotic intracellular protein degradation. This pathway has been validated as a target for antineoplastic therapy using both in vitro and preclinical models of human malignancies, and is influenced as part of the mechanism of action of certain chemotherapeutic agents. Drugs whose primary action involves modulation of ubiquitin-proteasome activity, most notably the proteasome inhibitor PS-341, are currently being evaluated in clinical trials, and have already been found to have significant antitumor efficacy. On the basis of the known mechanisms by which these agents work, and the available clinical data, they would seem to be well suited for the treatment of breast neoplasms. Such drugs, alone and especially in combination with current chemotherapeutics, may well represent important advances in the therapy of patients with breast cancer

    Production of Recombinant Human DNA Polymerase Delta in a Bombyx mori Bioreactor

    Get PDF
    Eukaryotic DNA polymerase Ξ΄ (pol Ξ΄) plays a crucial role in chromosomal DNA replication and various DNA repair processes. It is thought to consist of p125, p66 (p68), p50 and p12 subunits. However, rigorous isolation of mammalian pol Ξ΄ from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. While recombinant pol Ξ΄ isolated from infected insect cells have some problems of consistency in the quality of the preparations, and the yields are much lower. To address these deficiencies, we have constructed recombinant BmNPV baculoviruses using MultiBac system. This method makes the generation of recombinant forms of pol Ξ΄ containing mutations in any one of the subunits or combinations thereof extremely facile. From about 350 infected larvae, we obtained as much as 4 mg of pol Ξ΄ four-subunit complex. Highly purified enzyme behaved like the one of native form by rigorous characterization and comparison of its activities on poly(dA)/oligo(dT) template-primer and singly primed M13 DNA, and its homogeneity on FPLC gel filtration. In vitro base excision repair (BER) assays showed that pol Ξ΄ plays a significant role in uracil-intiated BER and is more likely to mediate LP BER, while the trimer lacking p12 is more likely to mediate SN BER. It seems likely that loss of p12 modulates the rate of SN BER and LP BER during the repair process. Thus, this work provides a simple, fast, reliable and economic way for the large-scale production of human DNA polymerase Ξ΄ with a high activity and purity, setting up a new platform for our further research on the biochemical properties of pol Ξ΄, its regulation and the integration of its functions, and how alterations in pol Ξ΄ function could contribute to the etiology of human cancer or other diseases that can result from loss of genomic stability

    Characterization of Human DNA Polymerase Delta and Its Subassemblies Reconstituted by Expression in the Multibac System

    Get PDF
    Mammalian DNA polymerase Ξ΄ (Pol Ξ΄), a four-subunit enzyme, plays a crucial and versatile role in DNA replication and DNA repair processes. We have reconstituted human Pol Ξ΄ complexes in insect cells infected with a single baculovirus into which one or more subunits were assembled. This system allowed for the efficient expression of the tetrameric Pol Ξ΄ holoenzyme, the p125/p50 core dimer, the core+p68 trimer and the core+p12 trimer, as well as the p125 catalytic subunit. These were isolated in milligram amounts with reproducible purity and specific activities by a highly standardized protocol. We have systematically compared their activities in order to gain insights into the roles of the p12 and p68 subunits, as well as their responses to PCNA. The relative specific activities (apparent kcat) of the Pol Ξ΄ holoenzyme, core+p68, core+p12 and p125/p50 core were 100, 109, 40, and 29. The corresponding apparent Kd's for PCNA were 7.1, 8.7, 9.3 and 73 nM. Our results support the hypothesis that Pol Ξ΄ interacts with PCNA through multiple interactions, and that there may be a redundancy in binding interactions that may permit Pol Ξ΄ to adopt flexible configurations with PCNA. The abilities of the Pol Ξ΄ complexes to fully extend singly primed M13 DNA were examined. All the subassemblies except the core+p68 were defective in their abilities to completely extend the primer, showing that the p68 subunit has an important function in synthesis of long stretches of DNA in this assay. The core+p68 trimer could be reconstituted by addition of p12

    p21WAF1/CIP1expression in stage I cutaneous malignant melanoma: its relationship with p53, cell proliferation and survival

    Get PDF
    The expression of p21, p53 and proliferating cell nuclear antigen (PCNA) was analysed by immunohistochemistry in a consecutive series of 369 clinical stage I cutaneous malignant melanoma patients. Correlation of the detected expression levels with each other, with clinicopathological data and with melanoma survival were statistically evaluated. p21 expression was significantly associated with p53 and PCNA expression levels. In addition, high levels of p53 and PCNA were significantly interrelated. Tumour thickness, recurrent disease, high TNM category and older (β‰₯ 55 years) age at diagnosis were inversely associated with p21 expression. Gender, bleeding, tumour thickness, Clark's level of invasion, TNM category and p53 index were all important predictors of both recurrence-free and overall survival of melanoma. In Cox's multivariate analysis including 164 patients with a complete set of data, only high tumour thickness and bleeding predicted poor recurrence-free survival (P= 0.0042 and 0.0087 respectively) or overall survival (P= 0.0147 and 0.0033 respectively). Even though elevated p21 expression may be associated with more favourable prognosis in clinical stage I cutaneous melanoma, our results suggest that cell cycle regulatory effects of p21 can be overcome by some other and stronger, partly yet unknown, mechanisms. 1999 Cancer Research Campaig

    P21-PARP-1 pathway is involved in cigarette smoke-induced lung DNA damage and cellular senescence

    Get PDF
    Persistent DNA damage triggers cellular senescence, which may play an important role in the pathogenesis of cigarette smoke (CS)-induced lung diseases. Both p21(CDKN1A) (p21) and poly(ADP-ribose) polymerase-1 (PARP-1) are involved in DNA damage and repair. However, the role of p21-PARP-1 axis in regulating CS-induced lung DNA damage and cellular senescence remains unknown. We hypothesized that CS causes DNA damage and cellular senescence through a p21-PARP-1 axis. To test this hypothesis, we determined the levels of Ξ³H2AX (a marker for DNA double-strand breaks) as well as non-homologous end joining proteins (Ku70 and Ku80) in lungs of mice exposed to CS. We found that the level of Ξ³H2AX was increased, whereas the level of Ku70 was reduced in lungs of CS-exposed mice. Furthermore, p21 deletion reduced the level of Ξ³H2AX, but augmented the levels of Ku70, Ku80, and PAR in lungs by CS. Administration of PARP-1 inhibitor 3-aminobenzamide increased CS-induced DNA damage, but lowered the levels of Ku70 and Ku80, in lungs of p21 knockout mice. Moreover, 3-aminobenzamide increased senescence-associated Ξ²-galactosidase activity, but decreased the expression of proliferating cell nuclear antigen in mouse lungs in response to CS. Interestingly, 3-aminobenzamide treatment had no effect on neutrophil influx into bronchoalveolar lavage fluid by CS. These results demonstrate that the p21-PARP-1 pathway is involved in CS-induced DNA damage and cellular senescence

    Identification of CSF biomarkers for frontotemporal dementia using SELDI-TOF

    No full text
    This investigation describes the discovery of novel possible cerebrospinal fluid (CSF) biomarkers for frontotemporal dementia (FTD) using surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry (MS). Sixteen clinically diagnosed FTD patients and 12 non-demented controls were included in the study. CSF was collected and analyzed for protein expression by SELDI-TOF MS. The samples were analyzed on four different array surfaces using two different energy-absorbing molecules as matrices. In total each sample was subjected to eight different surface/matrix conditions. About 2000 protein peaks (mass/charge ratios) were detected. Forty-two peaks were differentially expressed in FTD (P < 0.01). After exclusion of peaks with low signal-to-noise ratio and/or poor resolution and peaks representing differentially charged proteins, 10 peaks remained, five of which were increased and five decreased in FTD cases compared to controls. Using partial least square discriminant analysis (PLS-DA), the combination of these biomarkers discriminated FTD from non-demented controls with a sensitivity of 94%, a specificity of 83% and an accuracy of 89%. Five of the peaks were purified further and identified by tandem MS as a fragment of neurosecretory protein VGF, transthyretin, S-cysteinylated transthyretin, truncated cystatin C and a fragment of chromogranin B. With use of these potential biomarkers, FTD can be distinguished from control subjects with high accuracy in this pilot study
    corecore