10 research outputs found
Studium sondových diagnostik okrajového plazmatu v tokamaku pomocí počítačových simulací
Tato dizertační práce se zabývá studiem interakce plazmatu tokamaku se stěnou za pomocí počítačového modelování, a to zejména na zkoumání sondových diagnostik. Tokamakové plazma je v ní simulováno pomocí particle-in-cell modelu SPICE pracujícího ve dvou a třech pros- torových rozměrech. V rámci práce byl model SPICE rozšířen o paralelní výpočet Poissonovy rovnice a modul pro výpočet rovnice vedení tepla. Pomocí modelu SPICE byly provedeny simulace zaměřené na napodobení měření voltampérových charakteristik Langmuirových sond a to ve dvou různých geometriích. První z nich, simulace tzv. sond zarovnaných s povrchem (flush-mounted), srovnávaly běžně používané způsoby analýzy voltampérových charakteristik za účelem stanovení limitů, ve kterých lze spolehlivě získávat parametry plazmatu těmito meto- dami. Druhá sada simulací se zaobírala standardním válcovým hrotem vyčnívajícím do plaz- matu za účelem zkoumání její efektivní sběrné plochy, jejíž znalost umožňuje měření elektronové hustoty. Bylo zjištěno, že efektivní sběrná plocha je snižována vlivem útlumu hustoty v mag- netickém pre-sheathu před hlavicí nesoucí sondu a zároveň zvyšována záchytem Larmorovsky rotujících částic ze...The aim of the thesis is to examine plasma-wall interaction using computer modeling. Tokamak- relevant plasma conditions are simulated using the particle-in-cell model family SPICE working in three or two dimensions. SPICE model was upgraded with a parallel Poisson equation solver and a heat equation solver module. Plasma simulation aimed at synthetic Langmuir probe measurements were performed. First set considered a flush-mounted probe and the effect of variable magnetic field angle was studied with aim to compare existing probe data evaluation techniques and assess their operational space, in which the plasma parameters estimation via fit to the current-voltage characteristic is accurate. Second simulation set studied a protruding probe pin. Effective collecting area of such probe was investigated with intentions of density measurement collection. This area was found to be influenced by a combination of two factors. First, the density dampening inside the magnetic pre-sheath of the probe head, and the second, the extension of the area caused by Larmor rotation. A comparison with experimental results obtained at COMPASS tokamak was was performed, confirming these results. Keywords Langmuir probe, simulation, particle-in-cell, tokamak, Poisson equation, COMPASS 1Matematicko-fyzikální fakultaFaculty of Mathematics and Physic
Motion of charged particles in electromagnetic field; Electron spectrometer
Department of Surface and Plasma ScienceKatedra fyziky povrchů a plazmatuFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult
Heat and Particle Deposition on the Plasma-Facing Components
The interaction of plasma with plasma-facing components (PFCs) in tokamaks is of increasing interest because of implications for ITER and next-step devices. The heat and particle fluxes interacting with solid objects can be studied by means of particle-in-cell (PIC) simulations. The aim of this work is to use the existing family of PIC codes SPICE to simulate the heat and particle flux distribution on PFCs. The output of the simulations is then used in new heat equation solver, which calculates the temperature of the PFCs. This solver provides us a testbed for the parallel sparse matrix code development as well as for the complex application aimed at study of the melting of tiles
Study of probe diagnostics of tokamak edge plasma via computer simulation
The aim of the thesis is to examine plasma-wall interaction using computer modeling. Tokamak- relevant plasma conditions are simulated using the particle-in-cell model family SPICE working in three or two dimensions. SPICE model was upgraded with a parallel Poisson equation solver and a heat equation solver module. Plasma simulation aimed at synthetic Langmuir probe measurements were performed. First set considered a flush-mounted probe and the effect of variable magnetic field angle was studied with aim to compare existing probe data evaluation techniques and assess their operational space, in which the plasma parameters estimation via fit to the current-voltage characteristic is accurate. Second simulation set studied a protruding probe pin. Effective collecting area of such probe was investigated with intentions of density measurement collection. This area was found to be influenced by a combination of two factors. First, the density dampening inside the magnetic pre-sheath of the probe head, and the second, the extension of the area caused by Larmor rotation. A comparison with experimental results obtained at COMPASS tokamak was was performed, confirming these results. Keywords Langmuir probe, simulation, particle-in-cell, tokamak, Poisson equation, COMPASS
Poisson Equation Solver Parallelisation for Particle-in-Cell Model
Numerical simulations based on PIC technique like the SPICE2 model developed at IPP ASCR are often used in tokamak plasma physics to investigate the interaction of edge plasma with plasma-facing components. The SPICE2 model has been parallelised with the exception of the Poisson equation solver which considerably slows down the simulations. It is now being upgraded to a parallelised version to be efficient enough to perform more demanding tasks like the ITER tokamak baseline scenario edge plasma whose conditions like high density (up to 1020 m−3) and low temperature (1–2 eV) result in simulations taking several months to compute. Performance and scaling are compared for different cases in order to choose the optimal candidate for aforementioned applications
A source of cold hydrogen atoms
Vodík v molekulární a atomární formě je nejčastější prvek ve vesmíru a proto jsou chemické reakce, ve kterých vystupuje, důležité pro pochopení nejen formace prvních hvězd a galaxií, ale i pro studium současných dějů v mezihvězdném plynu. Studium například reakce H- + H -> H2 + e- (asociativní odtržení) ujasňuje náhled na proces tvorby molekul vodíku a umožňuje upřesnění kvantově-mechanických modelů. Pro tento a další experimenty je na KFPP přítomen zdroj chladného atomárního vodíku. V práci je popsána aparatura zdroje a její operace, navrhováno a částečně realizováno zlepšení uspořádání vnitřní konstrukce a jsou proměřeny základní charakteristiky zdroje.Vodík v molekulární a atomární formě je nejčastější prvek ve vesmíru a proto jsou chemické reakce, ve kterých vystupuje, důležité pro pochopení nejen formace prvních hvězd a galaxií, ale i pro studium současných dějů v mezihvězdném plynu. Studium například reakce H- + H -> H2 + e- (asociativní odtržení) ujasňuje náhled na proces tvorby molekul vodíku a umožňuje upřesnění kvantově-mechanických modelů. Pro tento a další experimenty je na KFPP přítomen zdroj chladného atomárního vodíku. V práci je popsána aparatura zdroje a její operace, navrhováno a částečně realizováno zlepšení uspořádání vnitřní konstrukce a jsou proměřeny základní charakteristiky zdroje.Department of Surface and Plasma ScienceKatedra fyziky povrchů a plazmatuFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult
Motion of charged particles in electromagnetic field; Electron spectrometer
Department of Surface and Plasma ScienceKatedra fyziky povrchů a plazmatuFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult
Study of probe diagnostics of tokamak edge plasma via computer simulation
The aim of the thesis is to examine plasma-wall interaction using computer modeling. Tokamak- relevant plasma conditions are simulated using the particle-in-cell model family SPICE working in three or two dimensions. SPICE model was upgraded with a parallel Poisson equation solver and a heat equation solver module. Plasma simulation aimed at synthetic Langmuir probe measurements were performed. First set considered a flush-mounted probe and the effect of variable magnetic field angle was studied with aim to compare existing probe data evaluation techniques and assess their operational space, in which the plasma parameters estimation via fit to the current-voltage characteristic is accurate. Second simulation set studied a protruding probe pin. Effective collecting area of such probe was investigated with intentions of density measurement collection. This area was found to be influenced by a combination of two factors. First, the density dampening inside the magnetic pre-sheath of the probe head, and the second, the extension of the area caused by Larmor rotation. A comparison with experimental results obtained at COMPASS tokamak was was performed, confirming these results. Keywords Langmuir probe, simulation, particle-in-cell, tokamak, Poisson equation, COMPASS
Development of the diagnostic tools for the COMPASS-U tokamak and plans for the first plasma
The COMPASS-U tokamak (R = 0.894 m, a = 0.27 m, Bt = 5 T, Ip = 2 MA) is a new medium-size device with fully metallic plasma facing components, currently under construction at the Institute of Plasma Physics of the Czech Academy of Sciences in Prague. It features a unique combination of parameters, such as a high temperature of the tokamak walls up to 500 ◦C allowing a high recycling regime, a high magnetic field connected with a high plasma density above 1020 m -3 and with a high heat flux (perpendicular to divertor targets) density at the outer strikepoint up to 90 MW/m2 in attached conditions. These parameters of the device pose strict constraints and requirements on the design of individual diagnostic systems. Strategy and present status of the development of the diagnostic systems for COMPASS-U are provided. Plans for a diagnostic set for the first plasma are reviewed. The review of the diagnostics systems involves the high-temperature compatible slow (up to 20 kHz) and fast (up to several MHz) inductive and non-inductive magnetic sensors (including Thick Printed Copper coils and Hall sensors), the sub-millimetre interferometer with an unambiguous channel, Electron Cyclotron Emission, the interlock and overview cameras, high resolution Thomson scattering, radiation diagnostics (neutron diagnostics, soft and hard X-ray diagnostics, bolometers, impurity monitors, effective ion charge), probe diagnostics (including rail probes) and manipulators
Overview of the COMPASS results
COMPASS addressed several physical processes that may explain the behaviour of important phenomena. This paper presents results related to the main fields of COMPASS research obtained in the recent two years, including studies of turbulence, L–H transition, plasma material interaction, runaway electron, and disruption physics: • Tomographic reconstruction of the edge/SOL turbulence observed by a fast visible camera allowed to visualize turbulent structures without perturbing the plasma. • Dependence of the power threshold on the X-point height was studied and related role of radial electric field in the edge/SOL plasma was identified. • The effect of high-field-side error fields on the L–H transition was investigated in order to assess the influence of the central solenoid misalignment and the possibility to compensate these error fields by low-field-side coils. • Results of fast measurements of electron temperature during ELMs show the ELM peak values at the divertor are around 80% of the initial temperature at the pedestal. • Liquid metals were used for the first time as plasma facing material in ELMy H-mode in the tokamak divertor. Good power handling capability was observed for heat fluxes up to 12 MW m−2 and no direct droplet ejection was observed. • Partial detachment regime was achieved by impurity seeding in the divertor. The evolution of the heat flux footprint at the outer target was studied. • Runaway electrons were studied using new unique systems—impact calorimetry, carbon pellet injection technique, wide variety of magnetic perturbations. Radial feedback control was imposed on the beam. • Forces during plasma disruptions were monitored by a number of new diagnostics for vacuum vessel (VV) motion in order to contribute to the scaling laws of sideways disruption forces for ITER. • Current flows towards the divertor tiles, incl. possible short-circuiting through PFCs, were investigated during the VDE experiments. The results support ATEC model and improve understanding of disruption loads