201 research outputs found

    Confined chiral polymer nematics: ordering and spontaneous condensation

    Full text link
    We investigate condensation of a long confined chiral nematic polymer inside a spherical enclosure, mimicking condensation of DNA inside a viral capsid. The Landau-de Gennes nematic free energy {\sl Ansatz} appropriate for nematic polymers allows us to study the condensation process in detail with different boundary conditions at the enclosing wall that simulate repulsive and attractive polymer-surface interactions. Increasing the chirality, we observe a transformation of the toroidal condensate into a closed surface with an increasing genus, akin to the ordered domain formation observed in cryo-microscopy of bacteriophages

    Ordering of anisotropic polarizable polymer chains on the full many-body level

    Full text link
    We study the effect of dielectric anisotropy of polymers on their equilibrium ordering within mean-field theory but with a formalism that takes into account the full n-body nature of van der Waals forces. Dielectric anisotropy within polymers is to be expected as the electronic properties of the polymer will typically be different along the polymer than across its cross section. It is therefore physically intuitive that larger charge fluctuations can be induced along the chain than perpendicular to it. We show that this dielectric anisotropy leads to n-body interactions which can induce an isotropic--nematic transition. The two body and three body components of the full van der Waals interaction are extracted and it is shown how the two body term behaves like the phenomenological self-aligning-pairwise nematic interaction. At the three body interaction level we see that the nematic phase that is energetically favorable is discotic, however on the full n-body interaction level we find that the normal axial nematic phase is always the stable ordered phase. The n-body nature of our approach also shows that the key parameter driving the nematic-isotropic transition is the bare persistence length of the polymer chain.Comment: 12 pages Revtex, 4 figure
    • …
    corecore