7 research outputs found

    Magnetic properties of X-Pt (X=Fe,Co,Ni) alloy systems

    Full text link
    We have studied the electronic and magnetic properties of Fe-Pt, Co-Pt and Ni-Pt alloy systems in ordered and disordered phases. The influence of various exchange-correlation functionals on values of equilibrium lattice parameters and magnetic moments in ordered Fe-Pt, Co-Pt and Ni-Pt alloys have been studied using linearized muffin-tin orbital method. The electronic structure calculations for the disordered alloys have been carried out using augmented space recursion technique in the framework of tight binding linearized muffin-tin orbital method. The effect of short range order has also been studied in the disordered phase of these systems. The results show good agreements with available experimental values.Comment: 21 pages, 4 eps figures, accepted for publication in Journal of Physics Condensed Matte

    Preparation of composite filaments and 3D prints based on PLA modified with carbon materials with the potential applications in tissue engineering

    No full text
    This paper discusses the possibilities of obtaining polylactide-based composites and nanocomposites modified with carbon materials using the extrusion method, as well as the potential of their application in 3D printing technology. The aim of this research is to determine the impact of the presence of carbon additives on the properties of composites: mechanical, thermal and chemical. For this purpose, several research techniques were used such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), DSC/TG analysis, infrared Fourier-transform infrared spectroscopy (FTIR) and mechanical tests. It has been shown that it is possible to effectively produce composite materials based on PLA and carbon modifiers after optimization of the extrusion and printing process. Special attention should be paid to the quality of carbon phases homogenization in PLA matrix because the inappropriate dispersion may have a negative effect on the final properties of the composite, especially those modified with nanomaterials. Moreover, the reinforcing effect of carbon phases can be observed, and the quality of obtained filament with carbon fiber after recycling does not differ significantly from the quality of commercially available filaments. The obtained filament was successfully used to print three-dimensional scaffolds. Therefore, both the use of materials which are biodegradable and biocompatible with human tissue and the 3D printing method have the potential to be applied in tissue engineering
    corecore