6 research outputs found
Optimization and Characterization of Indium Arsenide Quantum Dots for Application in III-V Material Solar Cells
In this work, InAs quantum dots grown by organometallic vapor-phase epitaxy (OMVPE) are investigated for application in III − V material solar cells. The first focus is on the opti- mization of growth parameters to produce high densities of uniform defect-free quantum dots via growth on 2 vicinal GaAs substrates. Parameters studied are InAs coverage, V/III ratio and growth rate. QDs are grown by the Stranski-Krastanov (SK) growth mode on (100) GaAs substrates misoriented toward (110) or (111) planes with various degrees of misorientation from 0◦ to 6◦. Atomic force microscopy results indicated that as misorientation angle increased toward(110),criticalthicknessforquantumdotformationincreasedwithθc =1.8ML,1.9ML and 2.0ML corresponding to 0◦, 2◦ and 6◦, respectively. Results for quantum dots grown on (111) misoriented substrates indicated, on average, that higher densities of quantum dots were achieved, compared with similar growths on substrates misoriented toward (110). Most no- tably, a stable average number density of 8 × 1010cm−2 was observed over a range of growth rates of 0.1ML/s − 0.4ML/s on (111) misoriented substrates compared with a decreasing number density as low as 2.85 × 1010cm−2 corresponding to a growth rate of 0.4ML/s grown on (110) misoriented substrates. p-i-n solar cell devices with a 10-layer quantum dot super- lattice imbedded in the i-region were also grown on (100) GaAs substrates misoriented 0◦, 2◦ and 6◦ toward (110) as well as a set of devices grown on substrates misoriented toward (111). Device results showed a 1.0mA/cm2 enhancement to the short-circuit current for a v 2◦ misoriented device with 2.2ML InAs coverage per quantum dot layer. Spectral response measurements were performed and integrated spectral response showed sub-GaAs bandgap short-circuit contribution which increased with increasing InAs coverage in the quantum dot layers from 0.04mA/cm2/ML, 0.28mA/cm2/ML and 0.19mA/cm2/ML corresponding to 0◦, 2◦ and 6◦ misorientation, respectively.
The second focus of this study was on the OMVPE growth of InAs quantum dots in a large-area commercial reactor. Quantum dot growth parameters require careful balancing in the large-scale reactor due to different thermodynamic and flow profiles compared with smaller- area reactors. The goal of the work was to control the growth process in order to produce high densities of uniform quantum dots for inclusion in double and triple junction III − V material solar cells. Initial growth proved unsuccessful due to lack of familiarity with the process but through balancing of injector flows of alkyl gasses, coherent and optically active quantum dots were able to first be formed at low densities (0.5 − 0.7 × 1010cm−2). Further optimization included increased quantum dot growth times leading to number densities in the (2.1−2.7×1010cm−2) with improved optical performance as measured by photoluminescence (PL) spectroscopy. Finally, an investigation of GaAs spacer layer thickness for improved opti- cal coupling was performed, indicating that a combined low temperature and high temperature GaAs thickness of 9.3nm led to strong PL intensity indicating good optical coupling of QD layers. Ge/(In)GaAs double junction solar cells were grown and fabricated with and without quantum dots in the (In)GaAs cell to investigate the effect of quantum dot inclusion on device performance. AM 0 measurements showed an average increase of 1.0mA/cm2 in short-circuit current for these devices. Integrated spectral response measurements revealed a contribution to vi short-circuit current of 0.02mA/cm2/QDlayer which is consistent with reports seen in literature. The current improvement for the double junction solar cells motivated the investigation of quantum dot inclusion in the (In)GaAs junction of a Ge/(In)GaAs/InGaP triple junction solar cell. AM0 measurements on these cells did not reveal any increase in current for quantum dot enhanced devices over a baseline device. Integrated spectral response for each junction revealed an increase of 0.3mA/cm2 in current for the middle junction and the top junction, respectively, compared with baseline results for these junctions, but also that the InGaP top junction was current limiting. This potentially is due to poor material quality in the InGaP junction as a result of quantum dot inclusion in the junction beneath it or to strain effects re- sulting from quantum dot inclusion. This current limiting nature of the top junction may have led to a reduced efficiency for quantum dot devices compared with a baseline and further opti- mization is required in order increase the efficiency of the quantum dot device compared with a baseline device
Pain Trajectories Following Subarachnoid Hemorrhage are Associated with Continued Opioid Use at Outpatient Follow-up
BACKGROUND: Subarachnoid hemorrhage (SAH) is characterized by the worst headache of life and associated with long-term opioid use. Discrete pain trajectories predict chronic opioid use following other etiologies of acute pain, but it is unknown whether they exist following SAH. If discrete pain trajectories following SAH exist, it is uncertain whether they predict long-term opioid use. We sought to characterize pain trajectories after SAH and determine whether they are associated with persistent opioid use. METHODS: We reviewed pain scores from patients admitted to a single tertiary care center for SAH from November 2015 to September 2019. Group-based trajectory modeling identified discrete pain trajectories during hospitalization. We compared outcomes across trajectory groups using χ and Kruskal-Wallis tests. Multivariable regression determined whether trajectory group membership was an independent predictor of long-term opioid use, defined as continued use at outpatient follow-up. RESULTS: We identified five discrete pain trajectories among 305 patients. Group 1 remained pain free. Group 2 reported low scores with intermittent spikes and slight increase over time. Group 3 noted increasing pain severity through day 7 with mild improvement until day 14. Group 4 experienced maximum pain with steady decrement over time. Group 5 reported moderate pain with subtle improvement. In multivariable analysis, trajectory groups 3 (odds ratio [OR] 3.5; 95% confidence interval [CI] 1.5-8.3) and 5 (OR 8.0; 95% CI 3.1-21.1), history of depression (OR 3.6; 95% CI 1.3-10.0) and racial/ethnic minority (OR 2.3; 95% CI 1.3-4.1) were associated with continued opioid use at follow-up (median 62 days following admission, interquartile range 48-96). CONCLUSIONS: Discrete pain trajectories following SAH exist. Recognition of pain trajectories may help identify those at risk for long-term opioid use
Comparison of induction agents for rapid sequence intubation in refractory status epilepticus: A single-center retrospective analysis
Endotracheal intubation, frequently required during management of refractory status epilepticus (RSE), can be facilitated by anesthetic medications; however, their effectiveness for RSE control is unknown. We performed a single-center retrospective review of patients admitted to a neurocritical care unit (NCCU) who underwent in-hospital intubation during RSE management. Patients intubated with propofol, ketamine, or benzodiazepines, termed anti-seizure induction (ASI), were compared to patients who received etomidate induction (EI). The primary endpoint was clinical or electrographic seizures within 12 h post-intubation. We estimated the association of ASI on post-intubation seizure using logistic regression. A sub-group of patients undergoing electroencephalography during intubation was identified to evaluate the immediate effect of ASI on RSE. We screened 697 patients admitted to the NCCU for RSE and identified 148 intubated in-hospital (n = 90 ASI, n = 58 EI). There was no difference in post-intubation seizure (26 % (n = 23) ASI, 29 % (n = 17) EI) in the cohort, however, there was increased RSE resolution with ASI in 24 patients with electrographic RSE during intubation (ASI: 61 % (n = 11/18) vs EI: 0 % (n = 0/6), p =.016). While anti-seizure induction did not appear to affect post-intubation seizure occurrence overall, a sub-group of patients undergoing electroencephalography during intubation had a higher incidence of seizure cessation, suggesting potential benefit in an enriched population
Effects of Mycobacterium vaccae NCTC 11659 and Lipopolysaccharide Challenge on Polarization of Murine BV-2 Microglial Cells
Previous studies have shown that the in vivo administration of soil-derived bacteria with anti-inflammatory and immunoregulatory properties, such as Mycobacterium vaccae NCTC 11659, can prevent a stress-induced shift toward an inflammatory M1 microglial immunophenotype and microglial priming in the central nervous system (CNS). It remains unclear whether M. vaccae NCTC 11659 can act directly on microglia to mediate these effects. This study was designed to determine the effects of M. vaccae NCTC 11659 on the polarization of naïve BV-2 cells, a murine microglial cell line, and BV-2 cells subsequently challenged with lipopolysaccharide (LPS). Briefly, murine BV-2 cells were exposed to 100 µg/mL whole-cell, heat-killed M. vaccae NCTC 11659 or sterile borate-buffered saline (BBS) vehicle, followed, 24 h later, by exposure to 0.250 µg/mL LPS (Escherichia coli 0111: B4; n = 3) in cell culture media vehicle (CMV) or a CMV control condition. Twenty-four hours after the LPS or CMV challenge, cells were harvested to isolate total RNA. An analysis using the NanoString platform revealed that, by itself, M. vaccae NCTC 11659 had an "adjuvant-like" effect, while exposure to LPS increased the expression of mRNAs encoding proinflammatory cytokines, chemokine ligands, the C3 component of complement, and components of inflammasome signaling such as Nlrp3. Among LPS-challenged cells, M. vaccae NCTC 11659 had limited effects on differential gene expression using a threshold of 1.5-fold change. A subset of genes was assessed using real-time reverse transcription polymerase chain reaction (real-time RT-PCR), including Arg1, Ccl2, Il1b, Il6, Nlrp3, and Tnf. Based on the analysis using real-time RT-PCR, M. vaccae NCTC 11659 by itself again induced "adjuvant-like" effects, increasing the expression of Il1b, Il6, and Tnf while decreasing the expression of Arg1. LPS by itself increased the expression of Ccl2, Il1b, Il6, Nlrp3, and Tnf while decreasing the expression of Arg1. Among LPS-challenged cells, M. vaccae NCTC 11659 enhanced LPS-induced increases in the expression of Nlrp3 and Tnf, consistent with microglial priming. In contrast, among LPS-challenged cells, although M. vaccae NCTC 11659 did not fully prevent the effects of LPS relative to vehicle-treated control conditions, it increased Arg1 mRNA expression, suggesting that M. vaccae NCTC 11659 induces an atypical microglial phenotype. Thus, M. vaccae NCTC 11659 acutely (within 48 h) induced immune-activating and microglial-priming effects when applied directly to murine BV-2 microglial cells, in contrast to its long-term anti-inflammatory and immunoregulatory effects observed on the CNS when whole-cell, heat-killed preparations of M. vaccae NCTC 11659 were given peripherally in vivo.</p