60 research outputs found
Materials construction through peptide design and solution assembly
Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. These self-assembled materials range from hydrogels for biomaterials to nanostructures with defined morphology and chemistry display for inorganic materials templating. The local nano- and overall network structure, and resultant viscoelastic and cell-level biological properties, of hydrogels that are formed via beta-hairpin self-assembly will be presented. Importantly, the hydrogels do not form until individual peptide molecules intramolecularly fold into a beta-hairpin conformation. Subsequently, specific, intermolecular assembly occurs into a branched nanofibrillar network. These peptide hydrogels are potentially excellent scaffolds for tissue repair and regeneration due to inherent cytocompatibility, porous morphology, and shear-thinning but instant recovery viscoelastic properties. Slight design variations of the peptide sequence allow for tunability of the self-assembly/hydrogelation kinetics as well as the tunability of the local peptide nanostructure and hierarchical network structure. In turn, by controlling hydrogel self-assembly kinetics, one dictates the ultimate stiffness of the resultant network and the kinetics through which gelation occurs. Examples of peptide primary structure alteration and the alteration of bulk network properties will be discussed. During assembly and gelation, desired components can be encapsulated within the hydrogel network such as drug compounds and/or living cells. The system can shear thin but immediately reheal to preshear stiffness on the cessation of the shear stress. Additionally, a new system comprised of coiled coil motifs designed theoretically to assemble into two-dimensional nanostructures not observed in nature will be introduced. The molecules and nanostructures are not natural sequences and provide opportunity for arbitrary nanostructure creation with peptides
Peptide hydrogels from twisted ribbon aggregates
We have studied the rheology of an aqueous solution phase formed in the model peptide system A10K (A=alanine, K=lysine), where the short hydrophobic peptides self-assemble into twisted ribbon structures consisting of laminated beta-sheets. The ribbons are crystalline in 2 dimensions, therefore rigid, and they are weakly charged. The average ribbon lengths, \u3cL \u3e≈ 60 nm, corresponding to an aspect ratio, L/d≈10. With increasing concentration a transition from a viscous liquid into a gel-like solid occurs around a volume fraction f
≈ 0.02, that we identify as the overlap concentration f*. Coinciding with the overlap concentration is also a phase transition, from the low concentration isotropic liquid phase to a nematic phase. This concentration is significantly lower than what is predicted for hard rods by Onsager theory for this given aspect ratio. We attribute this to the ribbon charge and long range electrostatic interactions, stabilizing the nematic phase. In this nematic phase, the storage modulus G’ increases strongly with increasing
Please click Additional Files below to see the full abstract
Dependence of Self-Assembled Peptide Hydrogel Network Structure on Local Fibril Nanostructure
Physically cross-linked, fibrillar hydrogel networks are formed by the self-assembly of β-hairpin peptide molecules with varying degrees of strand asymmetry. The peptide registry in the self-assembled state can be used as a design element to generate fibrils with twisting, nontwisting, or laminated morphology. The mass density of the networks varies significantly, and can be directly related to the local fibrillar morphology as evidenced by small angle neutron scattering (SANS) and in situ substantiation using cryogenic transmission electron microscopy (cryo-TEM) under identical concentrations and conditions. Similarly, the density of the network is dependent on changes in the peptide concentration. Bulk rheological properties of the hydrogels can be correlated to the fibrillar nanostructure, with the stiffer, laminated fibrils forming networks with a higher G′ as compared to the flexible, singular fibrillar networks
Twisted Ribbon Aggregates in a Model Peptide System
The model peptides A 8 K and A 10 K self-assemble in water into ca. 100 nm long ribbon-like aggregates. These structures can be described as β-sheets laminated into a ribbon structure with a constant elliptical cross-section of 4 by 8 nm, where the longer axis corresponds to a finite number, N ≠15, of laminated sheets, and 4 nm corresponds to a stretched peptide length. The ribbon cross-section is strikingly constant and independent of the peptide concentration. High-contrast transmission electron microscopy shows that the ribbons are twisted with a pitch λ ≠15 nm. The self-assembly is analyzed within a simple model taking into account the interfacial free energy of the hydrophobic β-sheets and a free energy penalty arising from an increased stretching of hydrogen bonds within the laminated β-sheets, arising from the twist of the ribbons. The model predicts an optimal value N, in agreement with the experimental observations
- …