99 research outputs found
Short-Term Exposure of Multipotent Stromal Cells to Low Oxygen Increases Their Expression of CX3CR1 and CXCR4 and Their Engraftment In Vivo
The ability of stem/progenitor cells to migrate and engraft into host tissues is key to their potential use in gene and cell therapy. Among the cells of interest are the adherent cells from bone marrow, referred to as mesenchymal stem cells or multipotent stromal cells (MSC). Since the bone marrow environment is hypoxic, with oxygen tensions ranging from 1% to 7%, we decided to test whether hypoxia can upregulate chemokine receptors and enhance the ability of human MSCs to engraft in vivo. Short-term exposure of MSCs to 1% oxygen increased expression of the chemokine receptors CX3CR1and CXCR4, both as mRNA and as protein. After 1-day exposure to low oxygen, MSCs increased in vitro migration in response to the fractalkine and SDF-1α in a dose dependent manner. Blocking antibodies for the chemokine receptors significantly decreased the migration. Xenotypic grafting into early chick embryos demonstrated cells from hypoxic cultures engrafted more efficiently than cells from normoxic cultures and generated a variety of cell types in host tissues. The results suggest that short-term culture of MSCs under hypoxic conditions may provide a general method of enhancing their engraftment in vivo into a variety of tissues
A Reverse Logistics Network Model for Handling Returned Products
58827Due to the emergence of e-commerce and the proliferation of liberal return policies, product returns have become daily routines for many companies. Considering the significant impact of product returns on the company’s bottom line, a growing number of
companies have attempted to streamline the reverse logistics process. Products are usually returned to initial collection points (ICPs) in small quantities and thus increase the unit shipping cost due to lack of freight discount opportunities. One way to address this issue is to aggregate the returned products into a larger shipment. However, such aggregation increases the
holding time at the ICP, which in turn increases the inventory carrying costs. Considering this logistics dilemma, the main objectives of this research are to minimize the total cost by determining the optimal location and collection period of holding time of ICPs; determining the optimal location of a centralized return centre; transforming the nonlinear objective function of the proposed model formulation by Min et al. (2006a) into a linear form; and conducting a sensitivity analysis to the model solutions according to varying parameters such as shipping volume. Existing models and solution procedures are too complicated to solve real-world problems. Through a series of computational experiments, we discovered that the linearization model obtained the optimal solution at a fraction of the time used by the traditional nonlinear model and solution procedure, as well as the ability to handle up to 150 customers as compared to 30 in the conventional nonlinear model. As such, the proposed linear model is
more suitable for actual industry applications than the existing models.S
p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance
<p>Abstract</p> <p>Background</p> <p>Cancer cells recurrently develop into acquired resistance to the administered drugs. The iatrogenic mechanisms of induced chemotherapy-resistance remain elusive and the degree of drug resistance did not exclusively correlate with reductions of drug accumulation, suggesting that drug resistance may involve additional mechanisms. Our aim is to define the potential targets, that makes drug-sensitive MCF-7 breast cancer cells turn to drug-resistant, for the anti-cancer drug development against drug resistant breast cancer cells.</p> <p>Methods</p> <p>Doxorubicin resistant human breast MCF-7 clones were generated. The doxorubicin-induced cell fusion events were examined. Heterokaryons were identified and sorted by FACS. In the development of doxorubicin resistance, cell-fusion associated genes, from the previous results of microarray, were verified using dot blot array and quantitative RT-PCR. The doxorubicin-induced expression patterns of pro-survival and pro-apoptotic genes were validated.</p> <p>Results</p> <p>YB-1 and ABCB5 were up regulated in the doxorubicin treated MCF-7 cells that resulted in certain degree of genomic instability that accompanied by the drug resistance phenotype. Cell fusion increased diversity within the cell population and doxorubicin resistant MCF-7 cells emerged probably through clonal selection. Most of the drug resistant hybrid cells were anchorage independent. But some of the anchorage dependent MCF-7 cells exhibited several unique morphological appearances suggesting minor population of the fused cells maybe de-differentiated and have progenitor cell like characteristics.</p> <p>Conclusion</p> <p>Our work provides valuable insight into the drug induced cell fusion event and outcome, and suggests YB-1, GST, ABCB5 and ERK3 could be potential targets for the anti-cancer drug development against drug resistant breast cancer cells. Especially, the ERK-3 serine/threonine kinase is specifically up-regulated in the resistant cells and known to be susceptible to synthetic antagonists.</p
Human haematopoietic stem cells express Oct4 pseudogenes and lack the ability to initiate Oct4 promoter-driven gene expression
The transcription factor Oct4 is well defined as a key regulator of embryonic stem (ES) cell pluripotency. In recent years, the role of Oct4 has purportedly extended to the self renewal and maintenance of multipotency in adult stem cell (ASC) populations. This profile has arisen mainly from reports utilising reverse transcription-polymerase chain reaction (RT-PCR) based methodologies and has since come under scrutiny following the discovery that many developmental genes have multiple pseudogenes associated with them. Six known pseudogenes exist for Oct4, all of which exhibit very high sequence homology (three >97%), and for this reason the generation of artefacts may have contributed to false identification of Oct4 in somatic cell populations. While ASC lack a molecular blueprint of transcription factors proposed to be involved with 'stemness' as described for ES cells, it is not unreasonable to assume that similar gene patterns may exist. The focus of this work was to corroborate reports that Oct4 is involved in the regulation of ASC self-renewal and differentiation, using a combination of methodologies to rule out pseudogene interference. Haematopoietic stem cells (HSC) derived from human umbilical cord blood (UCB) and various differentiated cell lines underwent RT-PCR, product sequencing and transfection studies using an Oct4 promoter-driven reporter. In summary, only the positive control expressed Oct4, with all other cell types expressing a variety of Oct4 pseudogenes. Somatic cells were incapable of utilising an exogenous Oct4 promoter construct, leading to the conclusion that Oct4 does not appear involved in the multipotency of human HSC from UCB
Somatic expression of LINE-1 elements in human tissues
LINE-1 expression damages host DNA via insertions and endonuclease-dependent DNA double-strand breaks (DSBs) that are highly toxic and mutagenic. The predominant tissue of LINE-1 expression has been considered to be the germ line. We show that both full-length and processed L1 transcripts are widespread in human somatic tissues and transformed cells, with significant variation in both L1 expression and L1 mRNA processing. This is the first demonstration that RNA processing is a major regulator of L1 activity. Many tissues also produce translatable spliced transcript (SpORF2). An Alu retrotransposition assay, COMET assays and 53BP1 foci staining show that the SpORF2 product can support functional ORF2 protein expression and can induce DNA damage in normal cells. Tests of the senescence-associated β-galactosidase expression suggest that expression of exogenous full-length L1, or the SpORF2 mRNA alone in human fibroblasts and adult stem cells triggers a senescence-like phenotype, which is one of the reported responses to DNA damage. In contrast to previous assumptions that L1 expression is germ line specific, the increased spectrum of tissues exposed to L1-associated damage suggests a role for L1 as an endogenous mutagen in somatic tissues. These findings have potential consequences for the whole organism in the form of cancer and mammalian aging
The Anti-Apoptotic Activity of BAG3 Is Restricted by Caspases and the Proteasome
Caspase-mediated cleavage and proteasomal degradation of ubiquitinated proteins are two independent mechanisms for the regulation of protein stability and cellular function. We previously reported BAG3 overexpression protected ubiquitinated clients, such as AKT, from proteasomal degradation and conferred cytoprotection against heat shock. We hypothesized that the BAG3 protein is regulated by proteolysis. caspase-resistant mutant. Caspase and proteasome inhibition resulted in partial and independent protection of BAG3 whereas inhibitors of both blocked BAG3 degradation. STS-induced apoptosis was increased when BAG3 was silenced, and retention of BAG3 was associated with cytoprotection.BAG3 is tightly controlled by selective degradation during STS exposure. Loss of BAG3 under STS injury required sequential caspase cleavage followed by polyubiquitination and proteasomal degradation. The need for dual regulation of BAG3 in apoptosis suggests a key role for BAG3 in cancer cell resistance to apoptosis
Intercellular Transport of Oct4 in Mammalian Cells: A Basic Principle to Expand a Stem Cell Niche?
Background: The octamer-binding transcription factor 4 (Oct4) was originally described as a marker of embryonic stem cells. Recently, the role of Oct4 as a key regulator in pluripotency was shown by its ability to reprogram somatic cells in vitro, either alone or in concert with other factors. While artificial induction of pluripotency using transcription factors is possible in mammalian cell culture, it remains unknown whether a potential natural transfer mechanism might be of functional relevance in vivo. The stem cell based regeneration of deer antlers is a unique model for rapid and complete tissue regeneration in mammals and therefore most suitable to study such mechanisms. Here, the transfer of pluripotency factors from resident stem cell niche cells to differentiated cells could recruit more stem cells and start rapid tissue regeneration. Methodology/Principal Findings: We report on the ability of STRO-1 + deer antlerogenic mesenchymal stem cells (DaMSCs) to transport Oct4 via direct cell-to-cell connections. Upon cultivation in stem cell expansion medium, we observed nuclear Oct4 expression in nearly all cells. A number of these cells exhibit Oct4 expression not only in the nucleus, but also with perinuclear localisation and within far-ranging intercellular connections. Furthermore, many cells showed intercellular connections containing both F-actin and a-tubulin and through which transport could be observed. To proof that intercellular Oct4-transfer has functional consequences in recipient cells we used a co-culture approach with STRO-1 + DaMSCs and a murine embryonic fibroblast indicator cell line (Oct4-GFP MEF). In this cell line a reporter gene (GFP) unde
- …