4 research outputs found

    Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells

    Get PDF
    The differentiation of naive CD8 T cells into effector cytotoxic T lymphocytes upon antigen stimulation is necessary for successful antiviral, and antitumor immune responses. Here, using a mouse model, we describe a dual role for the let-7 microRNAs in the regulation of CD8 T cell responses, where maintenance of the naive phenotype in CD8 T cells requires high levels of let-7 expression, while generation of cytotoxic T lymphocytes depends upon T cell receptor-mediated let-7 downregulation. Decrease of let-7 expression in activated T cells enhances clonal expansion and the acquisition of effector function through derepression of the let-7 targets, including Myc and Eomesodermin. Ultimately, we have identified a novel let-7-mediated mechanism, which acts as a molecular brake controlling the magnitude of CD8 T cell responses

    The mosquito effect: regulatory and effector T cells acquire cytoplasmic material from tumor cells through intercellular transfer

    Get PDF
    The phenomenon of intercellular transfer of cellular material, including membranes, cytoplasm, and even organelles, has been observed for decades. The functional impact and molecular mechanisms of such transfer in the immune system remain largely elusive due to the absence of a robust in vivo model. Here, we introduce a new tumor mouse model, where tumor cells express the soluble ultra-bright fluorescent protein ZsGreen, which allows detection and measurement of intercellular transfer of cytoplasm from tumor cells to infiltrating immune cells. We found that in addition to various types of myeloid lineage cells, a large fraction of T regulatory cells and effector CD8 T cells acquire tumor material. Based on the distribution of tumor-derived ZsGreen, the majority of T cells integrate captured cytoplasm into their own, while most myeloid cells store tumor material in granules. Furthermore, scRNA-seq analysis revealed significant alterations in transcriptomes of T cells that acquired tumor cell cytoplasm, suggesting potential impact on T cell function. We identified that the participation of T cells in intercellular transfer requires cell-cell contact and is strictly dependent on the activation status of T lymphocytes. Finally, we propose to name the described phenomenon of intercellular transfer for tumor infiltrating T cells the “mosquito effect”

    Survival of Naïve T Cells Requires the Expression of Let-7 miRNAs

    Get PDF
    Maintaining the diversity and constant numbers of naïve T cells throughout the organism's lifetime is necessary for efficient immune responses. Naïve T cell homeostasis, which consists of prolonged survival, occasional proliferation and enforcement of quiescence, is tightly regulated by multiple signaling pathways which are in turn controlled by various transcription factors. However, full understanding of the molecular mechanisms underlying the maintenance of the peripheral T cell pool has not been achieved. In the present study, we demonstrate that T cell-specific deficiency in let-7 miRNAs results in peripheral T cell lymphopenia resembling that of Dicer1 knockout mice. Deletion of let-7 leads to profound T cell apoptosis while overexpression prevents it. We further show that in the absence of let-7, T cells cannot sustain optimal levels of the pro-survival factor Bcl2 in spite of the intact IL-7 signaling, and re-expression of Bcl2 in let-7 deficient T cells completely rescues the survival defect. Thus, we have uncovered a novel let-7-dependent mechanism of post-transcriptional regulation of naïve T cell survival in vivo
    corecore