9 research outputs found

    Cellular interference in craniofrontonasal syndrome: Males mosaic for mutations in the x-linked EFNB1 gene are more severely affected than true hemizygotes

    Get PDF
    Craniofrontonasal syndrome (CFNS), an X-linked disorder caused by loss-of-function mutations of EFNB1, exhibits a paradoxical sex reversal in phenotypic severity: females characteristically have frontonasal dysplasia, craniosynostosis and additional minor malformations, but males are usually more mildly affected with hypertelorism as the only feature. X-inactivation is proposed to explain the more severe outcome in heterozygous females, as this leads to functional mosaicism for cells with differing expression of EPHRIN-B1, generating abnormal tissue boundariesa process that cannot occur in hemizygous males. Apparently challenging this model, males occasionally present with a more severe female-like CFNS phenotype. We hypothesized that such individuals might be mosaic for EFNB1 mutations and investigated this possibility in multiple tissue samples from six sporadically presenting males. Using denaturing high performance liquid chromatography, massively parallel sequencing and multiplex-ligation-dependent probe amplification (MLPA) to increase sensitivity above standard dideoxy sequencing, we identified mosaic mutations of EFNB1 in all cases, comprising three missense changes, two gene deletions and a novel point mutation within the 5 untranslated region (UTR). Quantification by Pyrosequencing and MLPA demonstrated levels of mutant cells between 15 and 69. The 5 UTR variant mutates the stop codon of a small upstream open reading frame that, using a dual-luciferase reporter construct, was demonstrated to exacerbate interference with translation of the wild-type protein. These results demonstrate a more severe outcome in mosaic than in constitutionally deficient males in an X-linked dominant disorder and provide further support for the cellular interference mechanism, normally related to X-inactivation in females. © The Author 2013. Published by Oxford University Press. All rights reserved

    Donnai-Barrow syndrome (DBS/FOAR) in a child with a homozygous LRP2 mutation due to complete chromosome 2 paternal isodisomy

    No full text
    Donnai-Barrow syndrome [Faciooculoacousticorenal (FOAR) syndrome; DBS/FOAR] is a rare autosomal recessive disorder resulting from mutations in the LRP2 gene located on chromosome 2q31.1. We report a unique DBS/FOAR patient homozygous for a 4-bp LRP2 deletion secondary to paternal uniparental isodisomy for chromosome 2. The propositus inherited the mutation from his heterozygous carrier father, whereas the mother carried only wild-type LRP2 alleles. This is the first case of DBS/FOAR resulting from uniparental disomy (UPD) and the fourth published case of any paternal UPD 2 ascertained through unmasking of an autosomal recessive disorder. The absence of clinical symptoms above and beyond the classical phenotype in this and the other disorders suggests that paternal chromosome 2 is unlikely to contain imprinted genes notably affecting either growth or development. This report highlights the importance of parental genotyping in order to give accurate genetic counseling for autosomal recessive disorder

    Congenital diaphragmatic hernia interval on chromosome 8p23.1 characterized by genetics and protein interaction networks

    No full text
    Chromosome 8p23.1 is a common hotspot associated with major congenital malformations, including congenital diaphragmatic hernia (CDH) and cardiac defects. We present findings from high-resolution arrays in patients who carry a loss (n = 18) or a gain (n = 1) of sub-band 8p23.1. We confirm a region involved in both diaphragmatic and heart malformations. Results from a novel CNVConnect algorithm, prioritizing protein–protein interactions between products of genes in the 8p23.1 hotspot and products of previously known CDH causing genes, implicated GATA4, NEIL2, and SOX7 in diaphragmatic defects. Sequence analysis of these genes in 226 chromosomally normal CDH patients, as well as in a small number of deletion 8p23.1 patients, showed rare unreported variants in the coding region; these may be contributing to the diaphragmatic phenotype. We also demonstrated that two of these three genes were expressed in the E11.5–12.5 primordial mouse diaphragm, the developmental stage at which CDH is thought to occur. This combination of bioinformatics and expression studies can be applied to other chromosomal hotspots, as well as private microdeletions or microduplications, to identify causative genes and their interaction networks
    corecore