41 research outputs found

    Nanoengineering of Materials for Field Emission Display Technologies

    Get PDF
    The holy-grail in terms of flat panel displays has been an inexpensive process for the production of large area 'hang on the wall' television that is based on an emissive technology. As such electron field emission displays, in principle, should be able to give high quality pictures, with good colour saturation, and, if suitable technologies for the production of the cathodes over large areas were to be made available, at low cost. This requires a process technology where temperatures must be maintained below 450 o C throughout the entire production cycle to be consistent with the softening temperature of display glass. In this paper we show three possible routes for nanoscale engineering of large area cathodes using low temperature processing that can be integrated into a display technology. The first process is based on carbon nanotube-polymer composites that can be screen printed over large areas and show electron field emission properties comparable with some of the best aligned nanotube arrays. The second process is based on the direct large area growth of carbon nanofibres directly on to substrates held at temperatures ranging from room temperature to 300 o C, thereby making it possible to use inexpensive substrates. The third process is based on the use of excimer laser processing of amorphous silicon for the production of lithography free large area three terminal nanocrystalline silicon substrates. Each route has its own advantages, and flexibility in terms of incorporation into an existing display technology. The harnessing of these synergies will be highlighted together, with the properties of the cathodes developed for the differing technologies

    Electron Field Emission From Room Temperature Grown Carbon Nanofibers

    Get PDF
    The observation of field induced electron emission from room temperature grown carbon nanofibers at low (5 V/mum) macroscopic electric fields is reported. The nanofibers were deposited using methane as a source gas in a conventional rf plasma enhanced chemical vapor deposition reactor using a Ni metal catalyst previously subjected to an Ar plasma treatment. Analysis of the scanning electron microscopy images of the nanofibers show them to possess an average diameter of 300 nm and that the nanofibers are observed to be radially dispersed over an area of 50 mum in diameter. No evidence of hysteresis in the current-voltage characteristic or conditioning of the emitters is observed. The mechanism for emission at low fields is attributed to field enhancement at the tips rather than from the surrounding amorphous carbon film which is shown to have a higher threshold field (20 V/mum) for emission.</p

    Electron Field Emission From Room Temperature Grown Carbon Nanofibers

    No full text
    The observation of field induced electron emission from room temperature grown carbon nanofibers at low (5 V/mum) macroscopic electric fields is reported. The nanofibers were deposited using methane as a source gas in a conventional rf plasma enhanced chemical vapor deposition reactor using a Ni metal catalyst previously subjected to an Ar plasma treatment. Analysis of the scanning electron microscopy images of the nanofibers show them to possess an average diameter of 300 nm and that the nanofibers are observed to be radially dispersed over an area of 50 mum in diameter. No evidence of hysteresis in the current-voltage characteristic or conditioning of the emitters is observed. The mechanism for emission at low fields is attributed to field enhancement at the tips rather than from the surrounding amorphous carbon film which is shown to have a higher threshold field (20 V/mum) for emission.</p
    corecore