1,014 research outputs found

    EXPLORING CALL CENTER ENABLED MECHANISMS FOR FIRM\u27S COMBINATIVE CAPABILITIES

    Get PDF
    The knowledge mechanisms of call centers have been emphasized by many pervious studies. Yet there is little empirical research that examines the call centers\u27 influence on firms\u27 combinative capabilities. To address this gap, this study examines call center enabled organizational mechanisms that contribute to the firms\u27 combinative capabilities. The study identifies differential effects from three types of combinative capabilities including system capabilities, coordination capabilities, and socialization capabilities. Through in-depth case studies of four Taiwanese call centers, this study finds seven organizational mechanisms including centralized information deployment and knowledge encapsulation, institution changing and foolproof, information hub and relationship management, decision making ladder, training center, network configuration, and job embeddedness . The findings provide practical implications to industry managers engaged in call center implementations from a combinative capabilities perspective. Future research directions are also discussed

    LEVERAGING SPORTING EQUIPMENT BALANCE AND WEIGHT DISTRUBUTION INFLUENCE ON PUTTING KINEMATICS –A STUDY ON COUNTER-BALANCED PUTTER DESIGN

    Get PDF
    In golf, putting is considered one of the most important factors for scoring of professional Tour players (Alexander & Kern, 2005), and accounts for 43% ± 2% per round (Pelz & Frank, 2000). Unlike the long game, short game like putting, is focused on its accuracy and consistency (Hume, Keogh & Reid, 2005). Putting stroke requires accurate and repeatable stroke especially during impact stage, and one of the most recent putter design is to grip down or to have extra weights on the grip end of the club, also known as the counterbalanced putter

    Improving Performance of CIGS Solar Cells by Annealing ITO Thin Films Electrodes

    Get PDF
    Indium tin oxide (ITO) thin films were grown on glass substrates by direct current (DC) reactive magnetron sputtering at room temperature. Annealing at the optimal temperature can considerably improve the composition, structure, optical properties, and electrical properties of the ITO film. An ITO sample with a favorable crystalline structure was obtained by annealing in fixed oxygen/argon ratio of 0.03 at 400°C for 30 min. The carrier concentration, mobility, resistivity, band gap, transmission in the visible-light region, and transmission in the near-IR regions of the ITO sample were -1.6E+20 cm−3, 2.7E+01 cm2/Vs, 1.4E-03 Ohm-cm, 3.2 eV, 89.1%, and 94.7%, respectively. Thus, annealing improved the average transmissions (400–1200 nm) of the ITO film by 16.36%. Moreover, annealing a copper-indium-gallium-diselenide (CIGS) solar cell at 400°C for 30 min in air improved its efficiency by 18.75%. The characteristics of annealing ITO films importantly affect the structural, morphological, electrical, and optical properties of ITO films that are used in solar cells

    Spontaneous regression of advanced hepatocellular carcinoma: a case report

    Get PDF
    Spontaneous regression of advanced hepatocellular carcinoma is extremely rare. A 66-year-old Taiwanese male patient with liver cirrhosis related to chronic hepatitis C presented with hepatocellular carcinoma with portal vein thrombosis. At first, he refused curative therapy, except for silymarin medicine. Spontaneous regression of hepatocellular carcinoma occurred with a decline in tumour size and tumour marker in imaging studies. The patient agreed to undergo surgery approximately 14 months after presentation because of no further decrease in tumour size and an increase in tumour marker in the imaging studies. The resected tumour was hepatocellular carcinoma with portal vein thromboses. Presently, the patient is alive and in good condition without any symptoms or tumour recurrence. We concluded that this was a rare case of spontaneous regression of advanced hepatocellular carcinoma

    Invited; Developing low-temperature defect passivation technology with supercritical fluid technology

    Get PDF
    Current technology nodes in the process of semiconductor manufacturing have faced many bottlenecks. Therefore, a disruptive-innovative semiconductor processing technology is crucially needed to make a significant breakthrough. Our research team has developed a low temperature (RT~250°C), defect passivation technology based on the supercritical fluid (SCF) technology applied in the nano-scale device processing to overcome the key issues. The SCF technology was originally applied in the field of the extraction and the cleaning of biotechnologies. However, our research team firstly applies this technology in the optoelectronic device. Compared to current high pressure annealing (HPA) and rapid thermal annealing (RTA) methods, the SCF-based defect passivation technology features low temperature, and can be applied for various materials and devices including photoelectric device, advanced nano-device, memory device, and wide bandgap device. Currently, the prototype of the 12” supercritical fluid processing equipment has already been built, and related recipes including nitridation, oxidation, hydrogenation, and sulfurization are also implemented for various devices and applications. In this talk, we will introduce related SCF defect passivation technology and future developments for the SCF applications

    Antimicrobial Drug Resistance in Pathogens Causing Nosocomial Infections at a University Hospital in Taiwan, 1981-1999

    Get PDF
    To determine the distribution and antimicrobial drug resistance in bacterial pathogens causing nosocomial infections, surveillance data on nosocomial infections documented from 1981 to 1999 at National Taiwan University Hospital were analyzed. During this period, 35,580 bacterial pathogens causing nosocomial infections were identified. Candida species increased considerably, ranking first by 1999 in the incidence of pathogens causing all nosocomial infections, followed by Staphylococcus aureus and Pseudomonas aeruginosa. Candida species also increased in importance as bloodstream infection isolates, from 1.0% in 1981-1986 to 16.2% in 1999. The most frequent isolates from urinary tract infections were Candida species (23.6%), followed by Escherichia coli (18.6%) and P. aeruginosa (11.0%). P. aeruginosa remained the most frequent isolates for respiratory tract and surgical site infections in the past 13 years. A remarkable increase in incidence was found in methicillin-resistant S. aureus (from 4.3% in 1981-1986 to 58.9% in 1993-1998), cefotaxime-resistant E. coli (from 0% in 1981-1986 to 6.1% in 1993-1998), and cefotaxime-resistant Klebsiella pneumoniae (from 4.0% in 1981-1986 to 25.8% in 1993-1998). Etiologic shifts in nosocomial infections and an upsurge of antimicrobial resistance among these pathogens, particularly those isolated from intensive care units, are impressive and alarming
    corecore