19 research outputs found

    Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare the microRNA (miRNA) expression profiles in neurons and innervated muscles after sciatic nerve entrapment using a non-constrictive silastic tube, subsequent surgical decompression, and denervation injury.</p> <p>Methods</p> <p>The experimental L4-L6 spinal segments, dorsal root ganglia (DRGs), and soleus muscles from each experimental group (sham control, denervation, entrapment, and decompression) were analyzed using an Agilent rat miRNA array to detect dysregulated miRNAs. In addition, muscle-specific miRNAs (miR-1, -133a, and -206) and selectively upregulated miRNAs were subsequently quantified using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR).</p> <p>Results</p> <p>In the soleus muscles, 37 of the 47 miRNAs (13.4% of the 350 unique miRNAs tested) that were significantly downregulated after 6 months of entrapment neuropathy were also among the 40 miRNAs (11.4% of the 350 unique miRNAs tested) that were downregulated after 3 months of decompression. No miRNA was upregulated in both groups. In contrast, only 3 miRNAs were upregulated and 3 miRNAs were downregulated in the denervated muscle after 6 months. In the DRGs, 6 miRNAs in the entrapment group (miR-9, miR-320, miR-324-3p, miR-672, miR-466b, and miR-144) and 3 miRNAs in the decompression group (miR-9, miR-320, and miR-324-3p) were significantly downregulated. No miRNA was upregulated in both groups. We detected 1 downregulated miRNA (miR-144) and 1 upregulated miRNA (miR-21) after sciatic nerve denervation. We were able to separate the muscle or DRG samples into denervation or entrapment neuropathy by performing unsupervised hierarchal clustering analysis. Regarding the muscle-specific miRNAs, real-time RT-PCR analysis revealed an ~50% decrease in miR-1 and miR-133a expression levels at 3 and 6 months after entrapment, whereas miR-1 and miR-133a levels were unchanged and were decreased after decompression at 1 and 3 months. In contrast, there were no statistical differences in the expression of miR-206 during nerve entrapment and after decompression. The expression of muscle-specific miRNAs in entrapment neuropathy is different from our previous observations in sciatic nerve denervation injury.</p> <p>Conclusions</p> <p>This study revealed the different involvement of miRNAs in neurons and innervated muscles after entrapment neuropathy and denervation injury, and implied that epigenetic regulation is different in these two conditions.</p

    MicroRNA profiling in ischemic injury of the gracilis muscle in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To profile the expression of microRNAs (miRNAs) and their potential target genes in the gracilis muscles following ischemic injury in rats by monitoring miRNA and mRNA expression on a genome-wide basis.</p> <p>Methods</p> <p>Following 4 h of ischemia and subsequent reperfusion for 4 h of the gracilis muscles, the specimens were analyzed with an Agilent rat miRNA array to detect the expressed miRNAs in the experimental muscles compared to those from the sham-operated controls. Their expressions were subsequently quantified by real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to determine their expression pattern after different durations of ischemia and reperfusion. In addition, the expression of the mRNA in the muscle specimens after 4 h of ischemia and reperfusion for 1, 3, 7, and 14 d were detected with the Agilent Whole Rat Genome 4 × 44 k oligo microarray. A combined approach using a computational prediction algorithm that included miRanda, PicTar, TargetScanS, MirTarget2, RNAhybrid, and the whole genome microarray experiment was performed by monitoring the mRNA:miRNA association to identify potential target genes.</p> <p>Results</p> <p>Three miRNAs (miR-21, miR-200c, and miR-205) of 350 tested rat miRNAs were found to have an increased expression in the miRNA array. Real-time RT-PCR demonstrated that, with 2-fold increase after 4 h of ischemia, a maximum 24-fold increase at 7 d, and a 7.5-fold increase at 14 d after reperfusion, only the miR-21, but not the miR-200c or miR-205 was upregulated throughout the experimental time. In monitoring the target genes of miR-21 in the expression array at 1, 3, 7, 14 d after reperfusion, with persistent expression throughout the experiment, we detected the same 4 persistently downregulated target genes (<it>Nqo1</it>, <it>Pdpn</it>, <it>CXCL3</it>, and <it>Rad23b</it>) with the prediction algorithms miRanda and RNAhybrid, but no target gene was revealed with PicTar, TargetScanS, and MirTarget2.</p> <p>Conclusions</p> <p>This study revealed 3 upregulated miRNAs in the gracilis muscle following ischemic injury and identified 4 potential target genes of miR-21 by examining miRNAs and mRNAs expression patterns in a time-course fashion using a combined approach with prediction algorithms and a whole genome expression array experiment.</p

    Gamma Knife surgery for optic glioma

    No full text

    Simvastatin Combined with Antioxidant Attenuates the Cerebral Vascular Endothelial Inflammatory Response in a Rat Traumatic Brain Injury

    No full text
    Traumatic brain injury (TBI) leads to important and deleterious neuroinflammation, as evidenced by indicators such as edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, cerebral vascular endothelial cells play a crucial role in the pathogenesis of inflammation. In our previous study, we proved that simvastatin could attenuate cerebral vascular endothelial inflammatory response in a rat traumatic brain injury. This purpose of this study was to determine whether simvastatin combined with an antioxidant could produce the same effect or greater and to examine affected surrogate biomarkers for the neuroinflammation after traumatic brain injury in rat. In our study, cortical contusions were induced, and the effect of acute and continuous treatment of simvastatin and vitamin C on behavior and inflammation in adult rats following experimental TBI was evaluated. The results demonstrated that simvastatin combined with an antioxidant could provide neuroprotection and it may be attributed to a dampening of cerebral vascular endothelial inflammatory response

    Symptomatic hemorrhagic complications associated with dural substitutes

    No full text
    Background: Duroplasty has been widely used in cranial surgery when primary closure is not possible. The goal is to protect the cerebrum and thereby ensure that complications were as few as possible. We reviewed a single-institution experience with a variety of dural substitutes in craniotomy and analyzed the risk factors for duroplasty-associated hemorrhagic complications. Patients and Methods: Patients who received dural replacement after craniotomy or craniectomy between July 2004 and June 2009 were enrolled into this study. Medical records were reviewed for diagnosis, procedure, and type of dural replacement. Clinical courses were reviewed for hemorrhagic complications, including subdural hematoma, extradural hematoma, and subarachnoid hemorrhage. Logistic regression models were used to analyzed the risk factors of duroplasty-associated hemorrhagic complications. Results: Two hundred and twelve patients were included in the study. Overall, the hemorrhagic complication rate was 4.7% (10 patients). Complications were seen for microporous polyester urethane, expanded polytetrafluoroethylene monolayer, polyester silicone, and Biomesh in 4.1%, 0%, and 38.5% of patients, respectively. Patients who received duroplasty with Biomesh had a higher hemorrhagic complication rate with the odds ratio of 24.75 (95% confidence interval, 4.33–141.41) in comparison of those with microporous polyester urethane group after adjusting for individual confounders. Conclusion: The increased risk of hemorrhagic complications associated with craniotomy is modified by choice of dural replacement. Our results could assist clinicians in their decision-making with respect to the optimal timing for synthetic dural substitutes in patients with tumor infiltration of the patient's dura, severe brain swelling in traumatic brain injury, or a result of shrinkage from exposure and electrocautery

    The risk of cataractogenesis after gamma knife radiosurgery: a nationwide population based case-control study

    No full text
    Abstract Background Medical radiation is considered a factor responsible for cataractogenesis. However, the incidence of this ophthalmologic complication resulting from gamma knife radiosurgery (GKRS) has not yet been reported. The present study aimed to determine the risk of cataractogenesis associated with radiation exposure from GKRS. Methods This study used information from a random sample of one million persons enrolled in the nationally representative Taiwan National Health Insurance Research Database. The GK group consisted of patients who underwent GKRS between 2000 and 2009. The non-GK group was composed of subjects who had never undergone GKRS, but who were matched with the case group for time of enrollment, age, sex, history of coronary artery disease, hypertension, and diabetes. Results There were 277 patients in the GK group and 2770 matched subjects in the non-GK group. The GK group had a higher overall incidence of cataracts (10.11% vs. 7.26%; crude hazard ratio [cHR], 1.59; 95% CI, 1.07–2.36; adjusted hazard ratio [aHR], 1.25; 95% CI, 0.82–1.90) than the non-GK group. Patients who had undergone computed tomography and/or cerebral angiography (CT/angio) studies had a higher risk of developing cataracts than those who did not (10.82% vs. 6.64%; cHR, 1.74; 95% CI, 1.31–2.30; aHR, 1.65; 95% CI, 1.22–2.23). The age group between 30 and 50 years had the highest risk of cataractogenesis in both the GK and CT/angio groups (cHR, 3.50; 95% CI, 1.58–7.72; aHR, 2.43; 95% CI, 1.02–5.81; cHR, 2.96; 95% CI, 1.47–5.99; aHR, 2.27; 95% CI, 1.05–4.93, respectively). Conclusions Radiation exposure due to GKRS and CT/angio study may be independently associated with increased risk of cataractogenesis. We suggest routine dosimetry measurement of eye lens and proper protection for patients with benign lesions during GKRS. Regular follow-up imaging studies should avoid the use of CT/angio, and particular care should be taken in the 30–50-year-old age group, due to their significantly increased risk of cataract formation
    corecore