3 research outputs found

    Interleukins, growth factors, and transcription factors are key targets for gene therapy in osteoarthritis: A scoping review.

    Full text link
    peer reviewed[en] OBJECTIVE: Osteoarthritis (OA) is the most common degenerative joint disease, characterized by a progressive loss of cartilage associated with synovitis and subchondral bone remodeling. There is however no treatment to cure or delay the progression of OA. The objective of this manuscript was to provide a scoping review of the preclinical and clinical studies reporting the effect of gene therapies for OA. METHOD: This review followed the JBI methodology and was reported in accordance with the PRISMA-ScR checklist. All research studies that explore in vitro, in vivo, or ex vivo gene therapies that follow a viral or non-viral gene therapy approach were considered. Only studies published in English were included in this review. There were no limitations to their date of publication, country of origin, or setting. Relevant publications were searched in Medline ALL (Ovid), Embase (Elsevier), and Scopus (Elsevier) in March 2023. Study selection and data charting were performed by two independent reviewers. RESULTS: We found a total of 29 different targets for OA gene therapy, including studies examining interleukins, growth factors and receptors, transcription factors and other key targets. Most articles were on preclinical in vitro studies (32 articles) or in vivo animal models (39 articles), while four articles were on clinical trials related to the development of TissueGene-C (TG-C). CONCLUSION: In the absence of any DMOAD, gene therapy could be a highly promising treatment for OA, even though further development is required to bring more targets to the clinical stage

    3,4-Diarylmaleimides-a novel class of kinase inhibitors-effectively induce apoptosis in FLT3-ITD-dependent cells

    No full text
    FLT3 kinase has become an attractive drug target in AML with up to 30% of cases harboring internal-tandem-duplication (ITD) mutations. For these, conferring a worse prognosis and decreased overall survival, several FLT3 tyrosine kinase inhibitors (TKIs) are currently being tested in clinical trials. However, when using these drugs as monotherapy, the problem of short duration of remissions and high incidence of TKI resistance has emerged. Here, we investigated two members of a novel class of tyrosine kinase inhibitors, 3,4-diarylmaleimides, for their efficacy on mutated FLT3 kinase. These compounds inhibit FLT3 kinase in an ATP-competitive manner and effectively inhibit phosphorylation of downstream targets. 3,4-Diarylmaleimides (DHF125 and 150) induce apoptosis in FLT3-ITD-dependent cells lines and patient blasts at low micromolar concentrations. They are retained in the cytoplasm of exposed cells for more than 24 h and synergize with chemotherapy and midostaurin. Both 3,4-diarylmaleimides show inhbition of FLT3-ITD-related kinase autophosphorylation at distinct tyrosine residues when compared to midostaurin. In conclusion, this novel group of compounds shows differential inhibition patterns with regard to FLT3 kinase and displays a promising profile for further clinical development. Currently, experiments evaluating toxicity in murine models and unraveling the exact binding mechanism are under way to facilitate a potential clinical application
    corecore