1,104 research outputs found
Dynamical Structure Factor of the Three-Dimensional Quantum Spin Liquid Candidate NaCaNi2F7
We study the dynamical structure factor of the spin-1 pyrochlore material NaCaNi2F7, which is well described by a weakly perturbed nearest-neighbour Heisenberg Hamiltonian, Our three approaches- molecular dynamics simulations, stochastic dynamical theory, and linear spin wave theory-reproduce remarkably well the momentum dependence of the experimental inelastic neutron scattering intensity as well as its energy dependence with the exception of the lowest energies. We discuss two surprising aspects and their implications for quantum spin liquids in general: the complete lack of sharp quasiparticle excitations in momentum space and the success of the linear spin wave theory in a regime where it would be expected to fail for several reasons
Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES
Temperature dependence of the electronic structure of SmB6 is studied by
high-resolution ARPES down to 1 K. We demonstrate that there is no essential
difference for the dispersions of the surface states below and above the
resistivity saturating anomaly (~ 3.5 K). Quantitative analyses of the surface
states indicate that the quasi-particle scattering rate increases linearly as a
function of temperature and binding energy, which differs from Fermi-Liquid
behavior. Most intriguingly, we observe that the hybridization between the d
and f states builds gradually over a wide temperature region (30 K < T < 110
K). The surface states appear when the hybridization starts to develop. Our
detailed temperature-dependence results give a complete interpretation of the
exotic resistivity result of SmB6, as well as the discrepancies among
experimental results concerning the temperature regions in which the
topological surface states emerge and the Kondo gap opens, and give new
insights into the exotic Kondo crossover and its relationship with the
topological surface states in the topological Kondo insulator SmB6.Comment: 8 pages, 5 figure
Direct observation of the spin texture in strongly correlated SmB6 as evidence of the topological Kondo insulator
The concept of a topological Kondo insulator (TKI) has been brought forward
as a new class of topological insulators in which non-trivial surface states
reside in the bulk Kondo band gap at low temperature due to the strong
spin-orbit coupling [1-3]. In contrast to other three-dimensional (3D)
topological insulators (e.g. Bi2Se3), a TKI is truly insulating in the bulk
[4]. Furthermore, strong electron correlations are present in the system, which
may interact with the novel topological phase. Applying spin- and
angle-resolved photoemission spectroscopy (SARPES) to the Kondo insulator SmB6,
a promising TKI candidate, we reveal that the surface states of SmB6 are spin
polarized, and the spin is locked to the crystal momentum. Counter-propagating
states (i.e. at k and -k) have opposite spin polarizations protected by
time-reversal symmetry. Together with the odd number of Fermi surfaces of
surface states between the 4 time-reversal invariant momenta in the surface
Brillouin zone [5], these findings prove, for the first time, that SmB6 can
host non-trivial topological surface states in a full insulating gap in the
bulk stemming from the Kondo effect. Hence our experimental results establish
that SmB6 is the first realization of a 3D TKI. It can also serve as an ideal
platform for the systematic study of the interplay between novel topological
quantum states with emergent effects and competing order induced by strongly
correlated electrons.Comment: 4 figure
Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo
Histone deacetylation and DNA methylation have a central role in the control of gene expression in tumours, including transcriptional repression of tumour suppressor genes and genes involved in sensitivity to chemotherapy. Treatment of cisplatin-resistant cell lines with an inhibitor of DNA methyltransferases, 2-deoxy-5âČazacytidine (decitabine), results in partial reversal of DNA methylation, re-expression of epigenetically silenced genes including hMLH1 and sensitisation to cisplatin both in vitro and in vivo. We have investigated whether the combination of decitabine and a clinically relevant inhibitor of histone deacetylase activity (belinostat, PXD101) can further increase the re-expression of genes epigenetically silenced by DNA methylation and enhance chemo-sensitisation in vivo at well-tolerated doses. The cisplatin-resistant human ovarian cell line A2780/cp70 has the hMLH1 gene methylated and is resistant to cisplatin both in vitro and when grown as a xenograft in mice. Treatment of A2780/cp70 with decitabine and belinostat results in a marked increase in expression of epigenetically silenced MLH1 and MAGE-A1 both in vitro and in vivo when compared with decitabine alone. The combination greatly enhanced the effects of decitabine alone on the cisplatin sensitivity of xenografts. As the dose of decitabine that can be given to patients and hence the maximum pharmacodynamic effect as a demethylating agent is limited by toxicity and eventual re-methylation of genes, we suggest that the combination of decitabine and belinostat could have a role in the efficacy of chemotherapy in tumours that have acquired drug resistance due to DNA methylation and gene silencing
Pharmacokinetics and Antiretroviral Activity of Lamivudine Alone or When Coadministered with Zidovudine in Human Immunodeficiency Virus Type 1-Infected Pregnant Women and Their Offspring
The safety, pharmacokinetics, and antiretroviral activity of lamivudine alone and in combination with zidovudine was studied in pregnant women infected with human immunodeficiency virus type 1 (HIV-1) and their neonates. Women received the drugs orally from week 38 of pregnancy to 1 week after delivery. Neonate therapy began 12 h after delivery and continued for 1 week. Both treatment regimens were well-tolerated in women and newborns. Lamivudine and zidovudine pharmacokinetics in pregnant women were similar to those in nonpregnant adults. Lamivudine and zidovudine freely crossed the placenta and were secreted in breast milk. Neonatal lamivudine clearance was about half that in pediatric patients; zidovudine clearance was consistent with previous reports. HIV-1 RNA could be quantified in 17 of the 20 women. At the onset of labor/delivery, mean virus load had decreased by âŒ1.5 log10 copies/mL in both treatment cohorts. Although not definitive for HIV-1 infection status, all neonates had HIV-1 RNA levels below the limit of quantification at birth and at ages 1 and 2 week
Effects of sowing date and insecticides on cereal aphid populations and barley yellow dwarf virus on barley in Kenya
The effects of the date of sowing and insecticide sprays on aphid populations and barley yellow dwarf virus (BYDV) incidence in barley was studied in Mau Narok, Kenya. Rhopalosiphum padi (L.) and Metopolophium dirhodum (WLK.) were common aphid species, but other cereal aphids present were Rhopalosiphum maidis (Fitch), Stiobion avenae (F.), Schizaphis grammum (Rond.) and Hysteroneura setaria Thom. The incidence of BYDV was significantly decreased in plots sown with seed that had been treated with imidacloprid (NTNâ33893, Gaucho) and subsequently sprayed with foliar insecticide (Cypermethrin). Yield loss due to BYDV was also significantly different between the treatments and between the earlyplanted and the lateâplanted crop (P < 0.05). Grain yield and 1000âgrain weight were not significantly different among insecticide treatments in the earlyâplanted crop. In the lateâplanted crop, the yield increase with seed treatment alone was highly significant (P < 0.001), with a yield increase of 36â43%, more than that of the untreated control. Grain yield was significantly (P < 0.05) negatively correlated with the total number of cereal aphids. as well as with the numbers of R. padi alone
Turbulent spectrum of the Earth's ozone field
The Total Ozone Mapping Spectrometer (TOMS) database is subjected to an
analysis in terms of the Karhunen-Loeve (KL) empirical eigenfunctions. The
concentration variance spectrum is transformed into a wavenumber spectrum, . In terms of wavenumber is shown to be in the
inverse cascade regime, in the enstrophy cascade regime with the
spectral {\it knee} at the wavenumber of barotropic instability.The spectrum is
related to known geophysical phenomena and shown to be consistent with physical
dimensional reasoning for the problem. The appropriate Reynolds number for the
phenomena is .Comment: RevTeX file, 4 pages, 4 postscript figures available upon request
from Richard Everson <[email protected]
What causes the irregular cycle of the atmospheric tape recorder signal in HCN?
Variations in the mixing ratio of long-lived trace gases entering the stratosphere in the tropics are carried upward with the rising air with the signal being observable throughout the tropical lower stratosphere. This phenomenon, referred to as "atmospheric tape recorder" has previously been observed for water vapor, CO2, and CO which exhibit an annual cycle. Recently, based on Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) satellite measurements, the tape recorder signal has been observed for hydrogen cyanide (HCN) but with an approximately two-year period. Here we report on a model simulation of the HCN tape recorder for the time period 2002-2008 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The model can reproduce the observed pattern of the HCN tape recorder signal if time-resolved emissions from fires in Indonesia are used as lower boundary condition. This finding indicates that inter-annual variations in biomass burning in Indonesia, which are strongly influenced by El Nino events, control the HCN tape recorder signal. A longer time series of tropical HCN data will probably exhibit an irregular cycle rather than a regular biannual cycle. Citation: Pommrich, R., R. Muller, J.-U. Grooss, G. Gunther, P. Konopka, M. Riese, A. Heil, M. Schultz, H.-C. Pumphrey, and K. A. Walker (2010), What causes the irregular cycle of the atmospheric tape recorder signal in HCN?, Geophys. Res. Lett., 37, L16805, doi:10.1029/2010GL044056
- âŠ