64 research outputs found

    Impact of off-shell dynamics on the transport properties and the dynamical evolution of Charm Quarks at RHIC and LHC temperatures

    Full text link
    We evaluate drag and diffusion transport coefficients comparing a quasi-particle approximation with on-shell constituents of the QGP medium and a dynamical quasi-particles model with off-shell bulk medium at finite temperature T. We study the effects of the width γ\gamma of the particles of the bulk medium on the charm quark transport properties exploring the range where γ<Mq,g\gamma < M_{q,g}. We find that off-shell effects are in general quite moderate and can induce a reduction of the drag coefficient at low momenta that disappear already at moderate momenta, p≳2−3 GeVp \gtrsim 2-3\, \rm GeV. We also observe a moderate reduction of the breaking of the Fluctuation-Dissipation theorem (FDT) at finite momenta. Moreover, we have performed a first study of the dynamical evolution of HQ elastic energy loss in a bulk medium at fixed temperature extending the Boltzmann (BM) collision integral to include off-shell dynamics. A comparison among the Langevin dynamics, the BM collisional integral with on-shell and the BM extension to off-shell dynamics shows that the evolution of charm energy when off-shell effects are included remain quite similar to the case of the on-shell BM collision integral.Comment: 13 pages, 14 figure

    Recent thermodynamic results from lattice QCD analyzed within a quasi-particle model

    Get PDF
    The thermodynamic behavior of QCD matter at high temperature is currently studied by lattice QCD theory. The main features are the fast rise of the energy density ϵ\epsilon around the critical temperature TcT_c and the large trace anomaly of the energy momentum tensor <Θμμ>=ϵ−3P< \Theta_\mu^\mu >=\epsilon - 3 P which hints at a strongly interacting system. Such features can be accounted for by employing a massive quasi-particle model with a temperature-dependent bag constant. Recent lattice QCD calculations with physical quark masses by the Wuppertal-Budapest group have shown a slower increase of ϵ\epsilon and a smaller <Θμμ><\Theta_\mu^\mu> peak with respect to previous results from the hotQCD collaboration. We investigate the implications of such differences from the point of view of a quasi-particle model, also discussing light and strange quark number susceptibilities. Furthermore, we predict the impact of these discrepancies on the temperature-dependence of the transport properties of matter, like the shear and bulk viscosities.Comment: 18 pages, 9 figures; version accepted in Phys. Rev.D; calculation with relaxation time \tau \sim g^4 ln g has been adde
    • …
    corecore