7 research outputs found
UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS\u3csub\u3e3\u3c/sub\u3e Nanoribbons: Detection of Isopropanol at ppm Concentrations
The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS3) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS3 nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 oC, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 oC reduces both the sensitivity and selectivity of the sensor array
UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS3 Nanoribbons: Detection of Isopropanol at ppm Concentrations
The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS(3)) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS(3) nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 °C, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 °C reduces both the sensitivity and selectivity of the sensor array
2D Molybdenum Carbide MXenes for Enhanced Selective Detection of Humidity in Air
2D transition metal carbides and nitrides (MXenes) open up novel opportunities in gas sensing with high sensitivity at room temperature. Herein, 2D Mo2CTx flakes with high aspect ratio are successfully synthesized. The chemiresistive effect in a sub-mu m MXene multilayer for different organic vapors and humidity at 10(1)-10(4) ppm in dry air is studied. Reasonably, the low-noise resistance signal allows the detection of H2O down to 10 ppm. Moreover, humidity suppresses the response of Mo2CTx to organic analytes due to the blocking of adsorption active sites. By measuring the impedance of MXene layers as a function of ac frequency in the 10(-2)-10(6) Hz range, it is shown that operation principle of the sensor is dominated by resistance change rather than capacitance variations. The sensor transfer function allows to conclude that the Mo2CTx chemiresistance is mainly originating from electron transport through interflake potential barriers with heights up to 0.2 eV. Density functional theory calculations, elucidating the Mo2C surface interaction with organic analytes and H2O, explain the experimental data as an energy shift of the density of states under the analyte's adsorption which induces increasing electrical resistance
The Ti<sub>0.2</sub>V<sub>1.8</sub>C MXene Ink-Prepared Chemiresistor: From Theory to Tests with Humidity versus VOCs
The 2D structure of MXenes attracts wide research attention toward an application of these materials in gas sensors. These structures are extremely sensitive to minor variations in their composition, which are employed for tuning their functional properties. Here, we consider the partially substituted MXenes of the composition of TixV2-xC, where x = 0.2, via quantum chemical calculations, and test their chemiresistive characteristics as a receptor component of the planar-type sensor and on-chip multisensor array. We thoroughly discuss the synthesis process of Ti0.2V1.8AlC MAX-phase and the corresponding MXenes, to prepare functional inks and, furthermore, deposit the films by microextrusion printing over an array of planar multi-electrode structures at the surface of a pen-sized chip. The crystal structure of the obtained materials is evaluated via X-ray diffraction analysis. The developed chip has been exposed upon few gaseous analytes, of alcohol VOCs, NH3, and H2O, of a 500–16,000 ppm concentration, at room temperature to ensure that we could observe the positive chemiresistive effect matured from resistance enhancing, with up to 10% vs. water vapors. The calculations carried in the framework of the density-functional theory for V2C, Ti2C, and Ti0.2V1.8C crystals ensured that the variations in their electronic structure were almost consistent with the experiment fundings: the most prominent effect is observed in relation to the H2O vapors. Therefore, these Ti0.2V1.8C structures could be considered for applying them in room temperature-operated hygrometers
UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS3 Nanoribbons: Detection of Isopropanol at ppm Concentrations
The growing demand of society for gas sensors for energy-efficient environmental sensing stimulates studies of new electronic materials. Here, we investigated quasi-one-dimensional titanium trisulfide (TiS3) crystals for possible applications in chemiresistors and on-chip multisensor arrays. TiS3 nanoribbons were placed as a mat over a multielectrode chip to form an array of chemiresistive gas sensors. These sensors were exposed to isopropanol as a model analyte, which was mixed with air at low concentrations of 1–100 ppm that are below the Occupational Safety and Health Administration (OSHA) permissible exposure limit. The tests were performed at room temperature (RT), as well as with heating up to 110 °C, and under an ultraviolet (UV) radiation at λ = 345 nm. We found that the RT/UV conditions result in a n-type chemiresistive response to isopropanol, which seems to be governed by its redox reactions with chemisorbed oxygen species. In contrast, the RT conditions without a UV exposure produced a p-type response that is possibly caused by the enhancement of the electron transport scattering due to the analyte adsorption. By analyzing the vector signal from the entire on-chip multisensor array, we could distinguish isopropanol from benzene, both of which produced similar responses on individual sensors. We found that the heating up to 110 °C reduces both the sensitivity and selectivity of the sensor array
Semiconductor-to-Insulator Transition in Inter-Electrode Bridge-like Ensembles of Anatase Nanoparticles under a Long-Term Action of the Direct Current
The results of experimental studies of ohmic conductivity degradation in the ensembles of nanostructured anatase bridges under a long-term effect of direct current are presented. Stochastic sets of partially conducting inter-electrode bridges consisting of close-packed anatase nanoparticles were formed by means of the seeding particles from drying aqueous suspensions on the surfaces of silica substrates with interdigital platinum electrodes. Multiple-run experiments conducted at room temperature have shown that ohmic conductivity degradation in these systems is irreversible. It is presumably due to the accumulated capture of conduction electrons by deep traps in anatase nanoparticles. The scaling analysis of voltage drops across the samples at the final stage of degradation gives a critical exponent for ohmic conductivity as ≈1.597. This value satisfactorily agrees with the reported model data for percolation systems. At an early stage of degradation, the spectral density of conduction current fluctuations observed within the frequency range of 0.01–1 Hz decreases approximately as 1/ω, while near the percolation threshold, the decreasing trend changes to ≈1/ω2. This transition is interpreted in terms of the increasing contribution of blockages and subsequent avalanche-like breakdowns of part of the local conduction channels in the bridges into electron transport near the percolation threshold
The room-temperature chemiresistive properties of potassium titanate whiskers versus organic vapors
The development of portable gas-sensing units implies a special care of their power efficiency, which is often approached by operation at room temperature. This issue primarily appeals to a choice of suitable materials whose functional properties are sensitive toward gas vapors at these conditions. While the gas sensitivity is nowadays advanced by employing the materials at nano-dimensional domain, the room temperature operation might be targeted via the application of layered solid-state electrolytes, like titanates. Here, we report gas-sensitive properties of potassium titanate whiskers, which are placed over a multielectrode chip by drop casting from suspension to yield a matrix mono-layer of varied density. The material synthesis conditions are straightforward both to get stable single-crystalline quasi-one-dimensional whiskers with a great extent of potassium replacement and to favor the increase of specific surface area of the structures. The whisker layer is found to be sensitive towards volatile organic compounds (ethanol, isopropanol, acetone) in the mixture with air at room temperature. The vapor identification is obtained via processing the vector signal generated by sensor array of the multielectrode chip with the help of pattern recognition algorithms.Peer reviewe