22 research outputs found

    A Translational Model for Repeated Episodes of Joint Inflammation : Welfare, Clinical and Synovial Fluid Biomarker Assessment

    Get PDF
    This study investigates repeated low-dose lipopolysaccharide (LPS) injections in equine joints as a model for recurrent joint inflammation and its impact on animal welfare. Joint inflammation was induced in eight horses by injecting 0.25 ng of LPS three times at two-week intervals. Welfare scores and clinical parameters were recorded at baseline and over 168 h post-injection. Serial synoviocentesis was performed for the analysis of a panel of synovial fluid biomarkers of inflammation and cartilage turnover. Clinical parameters and a final synoviocentesis were also performed eight weeks after the last sampling point to assess the recovery of normal joint homeostasis. Statistical methods were used to compare the magnitude of response to each of the 3 LPS inductions and to compare the baseline and final measurements. Each LPS injection produced consistent clinical and biomarker responses, with minimal changes in welfare scores. General matrix metalloproteinase (MMP) activity and joint circumference showed greater response to the second LPS induction, but response to the third was comparable to the first. Gylcosaminoglycans (GAG) levels showed a significantly decreased response with each induction, while collagen-cleavage neoepitope of type II collagen (C2C) and carboxypropetide of type II collagen epitope (CPII) showed quicker responses to the second and third inductions. All parameters were comparable to baseline values at the final timepoint. In conclusion, a consistent, reliable intra-articular inflammatory response can be achieved with repeated injections of 0.25 ng LPS, with minimal impact on animal welfare, suggesting potential as a refined translational model of recurrent joint inflammation

    Treatment Effects of Intra-Articular Allogenic Mesenchymal Stem Cell Secretome in an Equine Model of Joint Inflammation

    Get PDF
    Background: Allogenic mesenchymal stem cell (MSC) secretome is a novel intra-articular therapeutic that has shown promise in in vitro and small animal models and warrants further investigation. Objectives: To investigate if intra-articular allogenic MSC-secretome has anti-inflammatory effects using an equine model of joint inflammation. Study Design: Randomized positively and negatively controlled experimental study. Method: In phase 1, joint inflammation was induced bilaterally in radiocarpal joints of eight horses by injecting 0.25 ng lipopolysaccharide (LPS). After 2 h, the secretome of INFy and TNFα stimulated allogeneic equine MSCs was injected in one randomly assigned joint, while the contralateral joint was injected with medium (negative control). Clinical parameters (composite welfare scores, joint effusion, joint circumference) were recorded, and synovial fluid samples were analyzed for biomarkers (total protein, WBCC; eicosanoid mediators, CCL2; TNFα; MMP; GAGs; C2C; CPII) at fixed post-injection hours (PIH 0, 8, 24, 72, and 168 h). The effects of time and treatment on clinical and synovial fluid parameters and the presence of time-treatment interactions were evaluated. For phase 2, allogeneic MSC-secretome vs. allogeneic equine MSCs (positive control) was tested using a similar methodology. Results: In phase 1, the joint circumference was significantly (p < 0.05) lower in the MSC-secretome treated group compared to the medium control group at PIH 24, and significantly higher peak synovial GAG values were noted at PIH 24 (p < 0.001). In phase 2, no significant differences were noted between the treatment effects of MSC-secretome and MSCs. Main Limitations: This study is a controlled experimental study and therefore cannot fully reflect natural joint disease. In phase 2, two therapeutics are directly compared and there is no negative control. Conclusions: In this model of joint inflammation, intra-articular MSC-secretome injection had some clinical anti-inflammatory effects. An effect on cartilage metabolism, evident as a rise in GAG levels was also noted, although it is unclear whether this could be considered a beneficial or detrimental effect. When directly comparing MSC-secretome to MSCs in this model results were comparable, indicating that MSC-secretome could be a viable off-the-shelf alternative to MSC treatment

    Early Signs of Bone and Cartilage Changes Induced by Treadmill Exercise in Rats

    No full text
    This study aims to investigate the earliest alterations of bone and cartilage tissues as a result of different exercise protocols in the knee joint of Wistar rats. We hypothesize that pretraining to a continuous intense running protocol would protect the animals from cartilage degeneration. Three groups of animals were used: (i) an adaptive (pretraining) running group that ran for 8 weeks with gradually increasing velocity and time of running followed by a constant running program (6 weeks of 1.12 km/hour running per day); (ii) a non-adaptive running (constant running) group that initially rested for 8 weeks followed by 6 weeks of constant running; and (iii) a non-running (control) group. At weeks 8, 14, and 20 bone and cartilage were analyzed. Both running groups developed mild symptoms of cartilage irregularities, such as chondrocyte hypertrophy and cell clustering in different cartilage zones, in particular after the adaptive running protocol. As a result of physical training in the adaptive running exercise a dynamic response of bone was detected at week 8, where bone growth was enhanced. Conversely, the thickness of epiphyseal trabecular and subchondral bone (at week 14) was reduced due to the constant running in the period between 8 and 14 weeks. Finally, the intermediate differences between the two running groups disappeared after both groups had a resting period (from 14 to 20 weeks). The adaptive running group showed an increase in aggrecan gene expression and reduction of MMP2 expression after the initial 8 weeks running. Thus, the running exercise models in this study showed mild bone and cartilage/chondrocyte alterations that can be considered as early-stage osteoarthritis. The pretraining adaptive protocol before constant intense running did not protect from mild cartilage degeneration. © 2017 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research

    Early Signs of Bone and Cartilage Changes Induced by Treadmill Exercise in Rats

    No full text
    This study aims to investigate the earliest alterations of bone and cartilage tissues as a result of different exercise protocols in the knee joint of Wistar rats. We hypothesize that pretraining to a continuous intense running protocol would protect the animals from cartilage degeneration. Three groups of animals were used: (i) an adaptive (pretraining) running group that ran for 8 weeks with gradually increasing velocity and time of running followed by a constant running program (6 weeks of 1.12 km/hour running per day); (ii) a non-adaptive running (constant running) group that initially rested for 8 weeks followed by 6 weeks of constant running; and (iii) a non-running (control) group. At weeks 8, 14, and 20 bone and cartilage were analyzed. Both running groups developed mild symptoms of cartilage irregularities, such as chondrocyte hypertrophy and cell clustering in different cartilage zones, in particular after the adaptive running protocol. As a result of physical training in the adaptive running exercise a dynamic response of bone was detected at week 8, where bone growth was enhanced. Conversely, the thickness of epiphyseal trabecular and subchondral bone (at week 14) was reduced due to the constant running in the period between 8 and 14 weeks. Finally, the intermediate differences between the two running groups disappeared after both groups had a resting period (from 14 to 20 weeks). The adaptive running group showed an increase in aggrecan gene expression and reduction of MMP2 expression after the initial 8 weeks running. Thus, the running exercise models in this study showed mild bone and cartilage/chondrocyte alterations that can be considered as early-stage osteoarthritis. The pretraining adaptive protocol before constant intense running did not protect from mild cartilage degeneration. © 2017 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research

    No Effects of Hyperosmolar Culture Medium on Tissue Regeneration by Human Degenerated Nucleus Pulposus Cells Despite Upregulation Extracellular Matrix Genes

    No full text
    Study Design. An in vitro study using human degenerated nucleus pulposus cells. Objective. To determine the effect of osmolality and different osmolytes on the regeneration by human nucleus pulposus cells through gene expression and extracellular matrix production. Summary of Background Data. Intervertebral disc (IVD) degeneration is a major problem in developed countries. Regeneration of the IVD can prevent pain and costs due to diminished work absence and health care, and improve quality of life. The osmotic value of a disc decreases during degeneration due to loss of proteoglycans and might increase degeneration. It is known that gene expression of matrix genes of nucleus pulposus (NP) cells increases when cultured in hyperosmotic medium. Thus, increasing the osmolality of the disc might be beneficial for disc regeneration. Methods. In the current study, isolated degenerated human NP cells were used in regeneration culture with medium of different osmolalities, adjusted with different osmolytes. NaCl, urea and sucrose. The cells were cultured for 28 days and expression of matrix genes and production of glycosaminoglycans and collagen II were measured. Results. Gene expression for both collagen II and aggrecan increased with increasing osmolality using NaCl or sucrose, but not urea. Protein production however, was not affected by increasing osmolality and was decreased when using urea and sucrose. Expression of genes for Col1A1, MMP13, and MMP14 decreased with increasing osmolality, whereas expression of LOXL2 and LOXL3 increased. Transient expression of TonEBP was found 6 hours after the start of culture, but not at later time points. Conclusion. Although expression of matrix genes is upregulated, hyperosmolality does not enhance matrix production by nucleus pulposus cells. Raising osmolality can potentially increase matrix production, but in itself is not sufficient to accomplish regeneration in the current in vitro culture system

    Early Signs of Bone and Cartilage Changes Induced by Treadmill Exercise in Rats

    No full text
    This study aims to investigate the earliest alterations of bone and cartilage tissues as a result of different exercise protocols in the knee joint of Wistar rats. We hypothesize that pretraining to a continuous intense running protocol would protect the animals from cartilage degeneration. Three groups of animals were used: (i) an adaptive (pretraining) running group that ran for 8 weeks with gradually increasing velocity and time of running followed by a constant running program (6 weeks of 1.12 km/hour running per day); (ii) a non-adaptive running (constant running) group that initially rested for 8 weeks followed by 6 weeks of constant running; and (iii) a non-running (control) group. At weeks 8, 14, and 20 bone and cartilage were analyzed. Both running groups developed mild symptoms of cartilage irregularities, such as chondrocyte hypertrophy and cell clustering in different cartilage zones, in particular after the adaptive running protocol. As a result of physical training in the adaptive running exercise a dynamic response of bone was detected at week 8, where bone growth was enhanced. Conversely, the thickness of epiphyseal trabecular and subchondral bone (at week 14) was reduced due to the constant running in the period between 8 and 14 weeks. Finally, the intermediate differences between the two running groups disappeared after both groups had a resting period (from 14 to 20 weeks). The adaptive running group showed an increase in aggrecan gene expression and reduction of MMP2 expression after the initial 8 weeks running. Thus, the running exercise models in this study showed mild bone and cartilage/chondrocyte alterations that can be considered as early-stage osteoarthritis. The pretraining adaptive protocol before constant intense running did not protect from mild cartilage degeneration. © 2017 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research

    Sustained intra-articular release of celecoxib in an equine repeated LPS synovitis model

    No full text
    Synovial inflammation is an important characteristic of arthritic disorders like osteoarthritis and rheumatoid arthritis. Orally administered non-steroidal anti-inflammatory drugs (NSAIDs) such as celecoxib are among the most widely prescribed drugs to manage these debilitating diseases. Intra-articular delivery in biodegradable in situ forming hydrogels overcomes adverse systemic effects and prolongs drug retention in the joint. In this study two formulations of celecoxib (40 mg/g and 120 mg/g) in a propyl-capped PCLA-PEG-PCLA triblock copolymer were sequentially evaluated in a multiple LPS challenge equine synovitis model. Intra-articular release and systemic exposure to celecoxib and local changes at joint level were evaluated longitudinally. A single intra-articular injection of the high dose (HCLB)-gel or low dose (LCLB)-gel showed a sustained and controlled intra-articular release in both inflamed and healthy joints together with very low systemic exposure. Synovitis and lameness were moderate respectively very mild in this model due to the low concentration LPS (0.25 ng/joint). Both celecoxib formulations had a mild, transient effect on inflammatory and structural synovial fluid biomarkers but these returned to baseline within one week of administration. The HCLB-gel showed a significant inhibition in peak white blood cell concentration at 8 hours after LPS induction. Elevated levels of celecoxib were observed in the joint for up to 30 days but no overall anti-inflammatory effects could be observed, which was thought to be due to the moderate synovitis. As there were no long-term adverse effects, sustained intra-articular release of celecoxib from in situ forming hydrogels should be evaluated further for its effects on longer-term relief of inflammatory joint pain in humans and animals
    corecore