126 research outputs found

    Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle

    Get PDF
    Abstract Lifelong regular physical activity is associated with reduced risk of type 2 diabetes (T2D), maintenance of muscle mass and increased metabolic capacity. However, little is known about epigenetic mechanisms that might contribute to these beneficial effects in aged individuals. We investigated the effect of lifelong physical activity on global DNA methylation patterns in skeletal muscle of healthy aged men, who had either performed regular exercise or remained sedentary their entire lives (average age 62 years). DNA methylation was significantly lower in 714 promoters of the physically active than inactive men while methylation of introns, exons and CpG islands was similar in the two groups. Promoters for genes encoding critical insulin-responsive enzymes in glycogen metabolism, glycolysis and TCA cycle were hypomethylated in active relative to inactive men. Hypomethylation was also found in promoters of myosin light chain, dystrophin, actin polymerization, PAK regulatory genes and oxidative stress response genes. A cluster of genes regulated by GSK3β-TCF7L2 also displayed promoter hypomethylation. Together, our results suggest that lifelong physical activity is associated with DNA methylation patterns that potentially allow for increased insulin sensitivity and a higher expression of genes in energy metabolism, myogenesis, contractile properties and oxidative stress resistance in skeletal muscle of aged individuals

    GDF15 is an exercise-induced hepatokine regulated by glucagon and insulin in humans

    Get PDF
    ObjectiveGrowth differentiation factor (GDF)-15 is implicated in regulation of metabolism and circulating GDF15 increases in response to exercise. The source and regulation of the exercise-induced increase in GDF15 is, however not known.MethodPlasma GDF15 was measured by ELISA under the following conditions: 1) Arterial-to-hepatic venous differences sampled before, during, and after exercise in healthy male subjects (n=10); 2) exogenous glucagon infusion compared to saline infusion in resting healthy subjects (n=10); 3) an acute exercise bout with and without a pancreatic clamp (n=6); 4) healthy subjects for 36 hours (n=17), and 5) patients with anorexia nervosa (n=25) were compared to healthy age-matched subjects (n=25). Tissue GDF15 mRNA content was determined in mice in response to exhaustive exercise (n=16).ResultsThe splanchnic bed released GDF15 to the circulation during exercise and increasing the glucagon-to-insulin ratio in resting humans led to a 2.7-fold (P<0.05) increase in circulating GDF15. Conversely, inhibiting the exercise-induced increase in the glucagon-to-insulin ratio blunted the exercise-induced increase in circulating GDF15. Fasting for 36 hours did not affect circulating GDF15, whereas resting patients with anorexia nervosa displayed elevated plasma concentrations (1.4-fold, P<0.05) compared to controls. In mice, exercise increased GDF15 mRNA contents in liver, muscle, and adipose tissue.ConclusionIn humans, GDF15 is a “hepatokine” which increases during exercise and is at least in part regulated by the glucagon-to-insulin ratio. Moreover, chronic energy deprivation is associated with elevated plasma GDF15, which supports that GDF15 is implicated in metabolic signalling in humans

    Calprotectin — A Novel Marker of Obesity

    Get PDF
    BACKGROUND: The two inflammatory molecules, S100A8 and S100A9, form a heterodimer, calprotectin. Plasma calprotectin levels are elevated in various inflammatory disorders. We hypothesized that plasma calprotectin levels would be increased in subjects with low-grade systemic inflammation i.e. either obese subjects or subjects with type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS: Plasma calprotectin and skeletal muscle S100A8 mRNA levels were measured in a cohort consisting of 199 subjects divided into four groups depending on presence or absence of type 2 diabetes (T2D), and presence or absence of obesity. There was a significant interaction between obesity and T2D (p = 0.012). Plasma calprotectin was increased in obese relative to non-obese controls (p<0.0001), whereas it did not differ between obese and non-obese patients with T2D (p = 0.62). S100A8 mRNA levels in skeletal muscle were not influenced by obesity or T2D. Multivariate regression analysis (adjusting for age, sex, smoking and HOMA2-IR) showed plasma calprotectin to be strongly associated with BMI, even when further adjusted for fitness, CRP, TNF-alpha or neutrophil number. CONCLUSIONS/SIGNIFICANCE: Plasma calprotectin is a marker of obesity in individuals without type 2 diabetes

    Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP

    Get PDF
    Objective: Angiopoietin-like protein-4 (ANGPTL4) is a circulating protein that is highly expressed in liver and implicated in regulation of plasma triglyceride levels. Systemic ANGPTL4 increases during prolonged fasting and is suggested to be secreted from skeletal muscle following exercise. Methods: We investigated the origin of exercise-induced ANGPTL4 in humans by measuring the arterial-to-venous difference over the leg and the hepato-splanchnic bed during an acute bout of exercise. Furthermore, the impact of the glucagon-to-insulin ratio on plasma ANGPTL4 was studied in healthy individuals. The regulation of ANGPTL4 was investigated in both hepatic and muscle cells. Results: The hepato-splanchnic bed, but not the leg, contributed to exercise-induced plasma ANGPTL4. Further studies using hormone infusions revealed that the glucagon-to-insulin ratio is an important regulator of plasma ANGPTL4 as elevated glucagon in the absence of elevated insulin increased plasma ANGPTL4 in resting subjects, whereas infusion of somatostatin during exercise blunted the increase of both glucagon and ANGPTL4. Moreover, activation of the cAMP/PKA signaling cascade let to an increase in ANGPTL4 mRNA levels in hepatic cells, which was prevented by inhibition of PKA. In humans, muscle ANGPTL4 mRNA increased during fasting, with only a marginal further induction by exercise. In human muscle cells, no inhibitory effect of AMPK activation could be demonstrated on ANGPTL4 expression. Conclusions: The data suggest that exercise-induced ANGPTL4 is secreted from the liver and driven by a glucagon-cAMP-PKA pathway in humans. These findings link the liver, insulin/glucagon, and lipid metabolism together, which could implicate a role of ANGPTL4 in metabolic diseases

    Plasma and Muscle Myostatin in Relation to Type 2 Diabetes

    Get PDF
    OBJECTIVE: Myostatin is a secreted growth factor expressed in skeletal muscle tissue, which negatively regulates skeletal muscle mass. Recent animal studies suggest a role for myostatin in insulin resistance. We evaluated the possible metabolic role of myostatin in patients with type 2 diabetes and healthy controls. DESIGN: 76 patients with type 2 diabetes and 92 control subjects were included in the study. They were matched for age, gender and BMI. Plasma samples and biopsies from the vastus lateralis muscle were obtained to assess plasma myostatin and expression of myostatin in skeletal muscle. RESULTS: Patients with type 2 diabetes had higher fasting glucose (8.9 versus 5.1 mmol/L, P<0.001), plasma insulin (68.2 versus 47.2 pmol/L, P<0.002) and HOMA2-IR (1.6 versus 0.9, P<0.0001) when compared to controls. Patients with type 2 diabetes had 1.4 (P<0.01) higher levels of muscle myostatin mRNA content than the control subjects. Plasma myostatin concentrations did not differ between patients with type 2 diabetes and controls. In healthy controls, muscle myostatin mRNA correlated with HOMA2-IR (r = 0.30, P<0.01), plasma IL-6 (r = 0.34, P<0.05) and VO2 max (r = -0.26, P<0.05), however, no correlations were observed in patients with type 2 diabetes. CONCLUSIONS: This study supports the idea that myostatin may have a negative effect on metabolism. However, the metabolic effect of myostatin appears to be overruled by other factors in patients with type 2 diabetes

    Circular DNA elements of chromosomal origin are common in healthy human somatic tissue

    Get PDF
    Somatic cells can accumulate structural variations such as deletions. Here, Møller et al. show that normal human cells generate large extrachromosomal circular DNAs (eccDNAs), most likely the products of excised DNA, that can be transcriptionally active and, thus, may have phenotypic consequences

    Obesity and Low-Grade Inflammation Increase Plasma Follistatin-Like 3 in Humans

    Get PDF
    Background. Rodent models suggest that follistatin-like 3 (fstl3) is associated with diabetes and obesity. In humans, plasma fstl3 is reduced with gestational diabetes. In vitro, TNF-induces fstl3 secretion, which suggests a link to inflammation. Objective. To elucidate the association between plasma fstl3 and obesity, insulin resistance, and low-grade inflammation in humans. Study Design. Plasma fstl3 levels were determined in a cross-sectional study including three groups: patients with type 2 diabetes, impaired glucose tolerance, and healthy controls. In addition, lipopolysaccharide (LPS), TNF-, or interleukin-6 (IL-6) as well as a hyperinsulinemic euglycemic clamp were used to examine if plasma fstl3 was acutely regulated in humans. Results. Plasma fstl3 was increased in obese subjects independent of glycemic state. Moreover, plasma fstl3 was positively correlated with fat mass, plasma leptin, fasting insulin, and HOMA B and negatively with HOMA S. Furthermore plasma fstl3 correlated positively with plasma TNF-and IL-6 levels. Infusion of LPS and TNF-, but not IL-6 and insulin, increased plasma fstl3 in humans. Conclusion. Plasma fstl3 is increased in obese subjects and associated with fat mass and low-grade inflammation. Furthermore, TNF-increased plasma fstl3, suggesting that TNF-is one of the inflammatory drivers of increased systemic levels of fstl3
    • …
    corecore