29 research outputs found

    MAPK pathway and B cells overactivation in multiple sclerosis revealed by phosphoproteomics and genomic analysis

    Full text link
    Dysregulation of signaling pathways in multiple sclerosis (MS) can be analyzed by phosphoproteomics in peripheral blood mononuclear cells (PBMCs). We performed in vitro kinetic assays on PBMCs in 195 MS patients and 60 matched controls and quantified the phosphorylation of 17 kinases using xMAP assays. Phosphoprotein levels were tested for association with genetic susceptibility by typing 112 single-nucleotide polymorphisms (SNPs) associated with MS susceptibility. We found increased phosphorylation of MP2K1 in MS patients relative to the controls. Moreover, we identified one SNP located in the PHDGH gene and another on IRF8 gene that were associated with MP2K1 phosphorylation levels, providing a first clue on how this MS risk gene may act. The analyses in patients treated with disease-modifying drugs identified the phosphorylation of each receptor’s downstream kinases. Finally, using flow cytometry, we detected in MS patients increased STAT1, STAT3, TF65, and HSPB1 phosphorylation in CD19+ cells. These findings indicate the activation of cell survival and proliferation (MAPK), and proinflammatory (STAT) pathways in the immune cells of MS patients, primarily in B cells. The changes in the activation of these kinases suggest that these pathways may represent therapeutic targets for modulation by kinase inhibitors

    Molecular identification and full genome analysis of an echovirus 7 strain isolated from the environment in Greece

    No full text
    Two enteroviruses from river water and four from sewage treatment plant were isolated in Larissa, Greece, that all shared the same sequence. A full genome analysis was conducted in an attempt to reveal the evolutionary pathways of one of the isolated strains (LR11F7). VP1 nucleotide and phylogenetic analysis revealed that the isolated strain had 78% homology with the echovirus 7 prototype strain Wallace. Full genome analysis revealed that LR11F7 P1 region is related to echoviruses 7 and that P2 and P3 regions are originating from contemporary enteroviruses isolated in South Asia. Two recombination events were shown to be involved into the evolutionary history of LR11F7, the one event concerning 3A, 3B, and 2C, and the other concerning 3D genomic region, both with new types of HEV-B. The contribution of recombination to enterovirus evolution is substantial, giving rise to new genetic lineages with unknown properties

    Growth kinetic analysis of bi-recombinant poliovirus vaccine strains

    No full text
    Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and in rare cases may cause vaccine-associated paralytic poliomyelitis (VAPP). Mutations at specific sites of the genome and recombination between Sabin strains may result in the loss of the attenuated phenotype of OPV (Oral Poliovirus Vaccine) strains and the acquisition of traits characteristic of wild polioviruses, such as increased neurovirulence and loss of temperature sensitivity. In this study, we determined the phenotypic traits such as temperature sensitivity and growth kinetics of eight OPV isolates (six bi-recombinant and two non-recombinant). The growth phenotype of each isolate as well as of Sabin vaccine strains in Hep2 cell line at two different temperatures (37 and 40A degrees C) was evaluated using two different assays, RCT test (Reproductive Capacity at different Temperatures) and one-step growth curve analysis. Moreover, the nucleotide and amino acid positions in the genomes of the isolates that have been identified as being involved in the attenuated and thermo sensitive phenotype of Sabin vaccine strains were investigated. Mutations that result in loss of the attenuated and thermo sensitive phenotype of Sabin vaccine strains were identified in the genomes of all isolates. Both mutations and recombination events correlated well with the reverted phenotypic traits of OPV-derivatives. In the post-eradication era of wild polioviruses, the identification and the characterization (genomic and phenotypic) of vaccine-derived polioviruses become increasingly important in order to prevent cases or even outbreaks of paralytic poliomyelitis caused by neurovirulent strains

    Structure, Optical and Electric Properties of Opal-Bismuth Silicate Nanocomposites

    No full text
    Synthetic opals composed of 300 nm silica spheres are impregnated with a Bi₁₂SiO₂₀ melt at 1190 K. Structure and properties of the as-prepared samples are studied by employing the scanning electron microscopy, X-ray diffraction, and optical spectroscopy and direct current conductivity techniques. The nanocomposites are found to be multi-phase systems composed of Bi₁₂SiO₂₀, Bi₄Si₃O₁₂ and SiO₂ crystallites with an average linear size not less than 20 nm. Formation of Bi₄Si₃O₁₂ crystallites becomes possible as a result of changing in the Bi₂O₃-SiO₂ molar ratio due to the melting of silica spheres. The Raman intensity redistribution observed by surface scanning may be caused by both composition inhomogeneity and concentration of the exciting radiation field at composite defects. The "red" shift of photoluminescence band is observed. Activation energy of direct current conductivity is estimated as 1.1 eV

    Molecular characterization of a new intergenotype Norovirus GII recombinant

    No full text
    Human noroviruses (NoVs) of the Caliciviridae family are a major cause of epidemic gastroenteritis. The NoV genus is genetically diverse and recombination of viral RNA is known to depend upon various immunological and intracellular constraints that may allow the emergence of viable recombinants. In the present study, we report the development of a broadly reactive RT-PCR assay, which allowed the characterization of strain A6 at molecular level, established its genetic relationship at the sub-genogroup level and classified A6 strain at the sub-genotype level. The detection was carried out initially by enzyme-linked immunosorbent assay (ELISA) and the subsequent detection and molecular characterization of NoV strain was achieved by reverse transcription-PCR and sequencing. Based on the sequence analysis, A6 strain was revealed to belong to the GII genogroup of NoVs. Partial ORF1 gene sequencing analysis and complete ORF2 gene sequencing revealed that ORF1 and ORF2 belonged to two distinct genotypes GII/9 and GII/6, respectively, making obvious that A6 strain is a rare intergenotypic recombinant within the genogroup GII between GII.9 and GII.6 genotypes. A6 strain represents the first human NoV from Greece, whose genome has been partially (ORF1&ORF3) and completed (ORF2) sequenced. To our knowledge the recombination event GII.9/GII.6 in RdRp and capsid gene, respectively, that was revealed in the present study is reported for the first time

    Direct extraction and molecular characterization of enteroviruses genomes from human faecal samples

    No full text
    Routine diagnosis of acute flaccid paralysis (AFP) is still based on classical virological procedures. Several enteroviruses serotypes are not easily isolated in cell cultures system used and routinely more than one passage in cell culture is performed. A total of 54 archived faecal samples were examined. The heterogeneous nature of faecal samples may contribute to variations in the yields of viral nucleic acids with different extraction methods and specimen types. PCR inhibitors are frequently encountered in stool specimens. From the three methods initially compared for extraction of viral RNA, QIAamp Viral RNA Mini Kit was retained as it yielded the highest amount of viral RNA without the interference of RTPCR inhibitors. Evaluation of 54 archived stool specimens by RT-PCR and cell culture resulted in a higher frequency of detection by RT-PCR. With the use of RT-PCR we were able to detect two additional samples otherwise considered negative for enterovirus isolation if only the cell culture standard methodology was employed. RNA extraction with QIAamp Viral RNA Mini Kit coupled with RT-PCR in the 5'NCR (sub-grouping into distinct genetic clusters of all enteroviruses) and VP1 (reliable serotyping by sequencing) is a rapid and sensitive technique of direct poliovirus/non-polio enteroviruses recovery and molecular characterization from human faecal specimens without further passage in cell culture, which may select for genetic variants that may not accurately reflect the virus composition in the original specimen. (C) 2008 Elsevier Ltd. All rights reserved

    Complete genomic characterization of an intertypic Sabin 3/Sabin 2 capsid recombinant

    No full text
    The genetic properties of strain K/2002, isolated from fecal samples of a 7-month-old child who had received his first oral poliovirus vaccine (OPV) dose at the age of 3 months, are described. Preliminary sequencing characterization of isolate K/2002 revealed an S3/S2 recombination event at the 3' end of the VP1 coding region. A recombination event resulted in the introduction of six Sabin 2 amino acid residues in a Sabin 3 genomic background. Furthermore, mutations associated with loss of the attenuated phenotype of Sabin 3 strains have been identified in the genome of isolate K/2002. The data presented here emphasize the need for careful planning of vaccination strategies, which involve stopping OPV administration in regions that are certified to be polio-free

    A new RT-PCR assay for the identification of the predominant recombination types in 2C and 3D genomic regions of vaccine-derived poliovirus strains

    No full text
    In the post-eradication era of wild polioviruses, the only remaining sources of poliovirus infection worldwide would be the vaccine-derived polioviruses (VDPVs). As the preponderance of countries certified to be polio-free has switched from OPV (oral poliovirus vaccine) to IPV (inactivated poliovirus vaccine), importation of recombinant evolved derivatives of vaccinal strains would have serious implication for public health. To test the robustness of the proposed RT-PCR screening analysis, eleven recombinant vaccine-derived polioviruses that were characterized previously by sequencing by our group, in addition to three recently identified recombinant environmental isolates were assayed. Although the most definitive characterization of VDPVs is by genomic sequencing, in this study we describe a new, inexpensive and broadly applicable RT-PCR assay for the identification of the predominant recombination types S3/Sx in 2C and S2/Sx in 3D genomic regions respectively of VDPVs, that can be readily implemented in laboratories lacking sequencing facilities as a first approach for the early detection of vaccine-derived poliovirus (VDPVs). (C) 2009 Elsevier Ltd. All rights reserved

    Molecular and phylogenetic analysis of the HPV 16 E4 gene in cervical lesions from women in Greece

    No full text
    The HPV16 E1(a )E4 protein is thought to contribute to the release of newly formed viral particles from infected epithelia. In order to investigate amino acid mutations in the HPV16 E1(a )E4 protein, the complete E4 ORF was amplified by PCR in 27 HPV16-positive cervical samples, and the amplicons were cloned. Fifteen nucleic acid variations were identified in the E4 ORF, including seven silent nucleic acid mutations. In addition, nine amino acid mutations (A7V, A7P, L16I, D45E, L59I, L59T, Q66P, S72F, H75Q) were detected in the E1(a )E4 protein, and these were associated with the severity of cervical malignancy. A maximum-likelihood phylogenetic tree was constructed based on the E4 ORF, and nucleotide sequence analysis of the E4, E6 and E7 genes from the same samples was conducted in order to determine the phylogenetic origin of the cloned sequences from the amplified HPV16 E4. Based on the nucleotide sequence and phylogenetic analysis it was revealed that even though E4 ORF constitutes a small polymorphic portion of the viral genome (288 bp), it could provide valuable information about the origins of the HPV16 genome. In addition, molecular evolutionary analysis of the E4 coding region revealed that neutral selection is dominant in the overlapping region of the E4 and E2 ORFs
    corecore