127 research outputs found

    Observation of Two New Excited Ξb0 States Decaying to Λb0 K-π+

    Get PDF
    Two narrow resonant states are observed in the Λb0K-π+ mass spectrum using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the LHCb experiment and corresponding to an integrated luminosity of 6 fb-1. The minimal quark content of the Λb0K-π+ system indicates that these are excited Ξb0 baryons. The masses of the Ξb(6327)0 and Ξb(6333)0 states are m[Ξb(6327)0]=6327.28-0.21+0.23±0.12±0.24 and m[Ξb(6333)0]=6332.69-0.18+0.17±0.03±0.22 MeV, respectively, with a mass splitting of Δm=5.41-0.27+0.26±0.12 MeV, where the uncertainties are statistical, systematic, and due to the Λb0 mass measurement. The measured natural widths of these states are consistent with zero, with upper limits of Γ[Ξb(6327)0]<2.20(2.56) and Γ[Ξb(6333)0]<1.60(1.92) MeV at a 90% (95%) credibility level. The significance of the two-peak hypothesis is larger than nine (five) Gaussian standard deviations compared to the no-peak (one-peak) hypothesis. The masses, widths, and resonant structure of the new states are in good agreement with the expectations for a doublet of 1D Ξb0 resonances

    Precision measurement of CP\it{CP} violation in the penguin-mediated decay Bs0ϕϕB_s^{0}\rightarrow\phi\phi

    Get PDF
    A flavor-tagged time-dependent angular analysis of the decay Bs0ϕϕB_s^{0}\rightarrow\phi\phi is performed using pppp collision data collected by the LHCb experiment at % at s=13\sqrt{s}=13 TeV, the center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb^{-1}. The CP\it{CP}-violating phase and direct CP\it{CP}-violation parameter are measured to be ϕssˉs=0.042±0.075±0.009\phi_{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 rad and λ=1.004±0.030±0.009|\lambda|=1.004\pm 0.030 \pm 0.009 , respectively, assuming the same values for all polarization states of the ϕϕ\phi\phi system. In these results, the first uncertainties are statistical and the second systematic. These parameters are also determined separately for each polarization state, showing no evidence for polarization dependence. The results are combined with previous LHCb measurements using pppp collisions at center-of-mass energies of 7 and 8 TeV, yielding ϕssˉs=0.074±0.069\phi_{s\bar{s}s} = -0.074 \pm 0.069 rad and lambda=1.009±0.030|lambda|=1.009 \pm 0.030. This is the most precise study of time-dependent CP\it{CP} violation in a penguin-dominated BB meson decay. The results are consistent with CP\it{CP} symmetry and with the Standard Model predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-001.html (LHCb public pages

    Measurement of the Λb0Λ(1520)μ+μ\Lambda_{b}^{0}\to \Lambda(1520) \mu^{+}\mu^{-} differential branching fraction

    Get PDF
    The branching fraction of the rare decay Λb0Λ(1520)μ+μ\Lambda_{b}^{0}\to \Lambda(1520) \mu^{+}\mu^{-} is measured for the first time, in the squared dimuon mass intervals, q2q^2, excluding the J/ψJ/\psi and ψ(2S)\psi(2S) regions. The data sample analyzed was collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of $9\ \mathrm{fb}^{-1}.Theresultinthehighest. The result in the highest q^{2}interval, interval, q^{2} >15.0\ \mathrm{GeV}^2/c^4$, where theoretical predictions have the smallest model dependence, agrees with the predictions.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-050.html (LHCb public pages

    Search for beautiful tetraquarks in the <i>ϒ</i>(1<i>S</i>)μ<sup>+</sup>μ<sup>−</sup> invariant-mass spectrum

    Get PDF
    International audienceThe ϒ(1S)μ+^{+}μ^{−} invariant-mass distribution is investigated for a possible exotic meson state composed of two b quarks and two b \overline{b} quarks, Xbbbb {X}_{b\overline{b}b\overline{b}} . The analysis is based on a data sample of pp collisions recorded with the LHCb detector at centre-of-mass energies s=7 \sqrt{s}=7 , 8 and 13 TeV, corresponding to an integrated luminosity of 6.3 fb1^{−1}. No significant excess is found, and upper limits are set on the product of the production cross-section and the branching fraction as functions of the mass of the Xbbbb {X}_{b\overline{b}b\overline{b}} state. The limits are set in the fiducial volume where all muons have pseudorapidity in the range [2.0, 5.0], and the Xbbbb {X}_{b\overline{b}b\overline{b}} state has rapidity in the range [2.0, 4.5] and transverse momentum less than 15 GeV/c

    Measurement of the CKM angle γ using<i> B</i><sup>±</sup> → <i>DK</i><sup>±</sup> with D → K <sub>S</sub> <sup>0</sup> π<sup>+</sup>π<sup>−</sup>, K <sub>S</sub> <sup>0</sup> K<sup>+</sup>K<sup>−</sup> decays

    Get PDF
    A binned Dalitz plot analysis of B±DK±B^\pm \to D K^\pm decays, with DKS0π+πD\to K_\text{S}^0\pi^+\pi^- and DKS0K+KD\to K_\text{S}^0K^+K^-, is used to perform a measurement of the CP-violating observables x±x_{\pm} and y±y_{\pm}, which are sensitive to the Cabibbo-Kobayashi-Maskawa angle γ\gamma. The analysis is performed without assuming any DD decay model, through the use of information on the strong-phase variation over the Dalitz plot from the CLEO collaboration. Using a sample of proton-proton collision data collected with the LHCb experiment in 2015 and 2016, and corresponding to an integrated luminosity of 2.0fb1\,\text{fb}^{-1}, the values of the CP violation parameters are found to be x=(9.0±1.7±0.7±0.4)×102x_- = ( 9.0 \pm 1.7 \pm 0.7 \pm 0.4) \times 10^{-2}, y=(2.1±2.2±0.5±1.1)×102y_- = ( 2.1 \pm 2.2 \pm 0.5 \pm 1.1) \times 10^{-2}, x+=(7.7±1.9±0.7±0.4)×102x_+ = (- 7.7 \pm 1.9 \pm 0.7 \pm 0.4) \times 10^{-2}, and y+=(1.0±1.9±0.4±0.9)×102y_+ = (- 1.0 \pm 1.9 \pm 0.4 \pm 0.9) \times 10^{-2}. The first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the strong-phase measurements. These values are used to obtain \gamma = \left(87\,^{+11}_{-12}\right)^\circ, rB=0.0860.014+0.013r_B = 0.086^{+ 0.013}_{-0.014}, and δB=(101±11)\delta_B = (101 \pm 11)^\circ, where rBr_B is the ratio between the suppressed and favoured BB-decay amplitudes and δB\delta_B is the corresponding strong-interaction phase difference. This measurement is combined with the result obtained using 2011 and 2012 data collected with the \lhcb experiment, to give \gamma = \left(80\,^{+10}_{\,-9}\right)^\circ, rB=0.080±0.011r_B = 0.080 \pm 0.011, and δB=(110±10)\delta_B = (110 \pm 10)^\circ.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2018-017.html. Version 2 includes minor changes made during journal revie

    Precise determination of the B-s(0)-B-s(-0) oscillation frequency

    Get PDF
    Mesons comprising a beauty quark and a strange quark can oscillate between particle (B0s) and antiparticle (B0s) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, deltams. Here we present ameasurement of deltams using B0s2DsPi decays produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be deltams = 17.7683 +- 0.0051 +- 0.0032 ps-1, where the first uncertainty is statistical and the second systematic. This measurement improves upon the current deltams precision by a factor of two. We combine this result with previous LHCb measurements to determine deltams = 17.7656 +- 0.0057 ps-1, which is the legacy measurement of the original LHCb detector.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-005.html (LHCb public pages
    corecore