2 research outputs found

    Vancomycin Dosing Practices among Critical Care Pharmacists: A Survey of Society of Critical Care Medicine Pharmacists

    Get PDF
    Introduction: Critically ill patients and their pharmacokinetics present complexities often not considered by consensus guidelines from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Prior surveys have suggested discordance between certain guideline recommendations and reported infectious disease pharmacist practice. Vancomycin dosing practices, including institutional considerations, have not previously been well described in the critically ill patient population. Objectives: To evaluate critical care pharmacists\u27 self-reported vancomycin practices in comparison to the 2009 guideline recommendations and other best practices identified by the study investigators. Methods: An online survey developed by the Research and Scholarship Committee of the Clinical Pharmacy and Pharmacology (CPP) Section of the Society of Critical Care Medicine (SCCM) was sent to pharmacist members of the SCCM CPP Section practicing in adult intensive care units in the spring of 2017. This survey queried pharmacists\u27 self-reported practices regarding vancomycin dosing and monitoring in critically ill adults. Results: Three-hundred and sixty-four responses were received for an estimated response rate of 26%. Critical care pharmacists self-reported largely following the 2009 vancomycin dosing and monitoring guidelines. The largest deviations in guideline recommendation compliance involve consistent use of a loading dose, dosing weight in obese patients, and quality improvement efforts related to systematically monitoring vancomycin-associated nephrotoxicity. Variation exists regarding pharmacist protocols and other practices of vancomycin use in critically ill patients. Conclusion: Among critical care pharmacists, reported vancomycin practices are largely consistent with the 2009 guideline recommendations. Variations in vancomycin dosing and monitoring protocols are identified, and rationale for guideline non-adherence with loading doses elucidated

    Impact of pharmacists to improve patient care in the critically ill: A large multicenter analysis using meaningful metrics with the medication regimen complexity-ICU (MRC-ICU)

    No full text
    Objectives: Despite the established role of the critical care pharmacist on the ICU multiprofessional team, critical care pharmacist workloads are likely not optimized in the ICU. Medication regimen complexity (as measured by the Medication Regimen Complexity-ICU [MRC-ICU] scoring tool) has been proposed as a potential metric to optimize critical care pharmacist workload but has lacked robust external validation. The purpose of this study was to test the hypothesis that MRC-ICU is related to both patient outcomes and pharmacist interventions in a diverse ICU population. Design: This was a multicenter, observational cohort study. Setting: Twenty-eight ICUs in the United States. Patients: Adult ICU patients. Interventions: Critical care pharmacist interventions (quantity and type) on the medication regimens of critically ill patients over a 4-week period were prospectively captured. MRC-ICU and patient outcomes (i.e., mortality and length of stay [LOS]) were recorded retrospectively. Measurements and main results: A total of 3,908 patients at 28 centers were included. Following analysis of variance, MRC-ICU was significantly associated with mortality (odds ratio, 1.09; 95% CI, 1.08-1.11; p \u3c 0.01), ICU LOS (β coefficient, 0.41; 95% CI, 00.37-0.45; p \u3c 0.01), total pharmacist interventions (β coefficient, 0.07; 95% CI, 0.04-0.09; p \u3c 0.01), and a composite intensity score of pharmacist interventions (β coefficient, 0.19; 95% CI, 0.11-0.28; p \u3c 0.01). In multivariable regression analysis, increased patient: pharmacist ratio (indicating more patients per clinician) was significantly associated with increased ICU LOS (β coefficient, 0.02; 0.00-0.04; p = 0.02) and reduced quantity (β coefficient, -0.03; 95% CI, -0.04 to -0.02; p \u3c 0.01) and intensity of interventions (β coefficient, -0.05; 95% CI, -0.09 to -0.01). Conclusions: Increased medication regimen complexity, defined by the MRC-ICU, is associated with increased mortality, LOS, intervention quantity, and intervention intensity. Further, these results suggest that increased pharmacist workload is associated with decreased care provided and worsened patient outcomes, which warrants further exploration into staffing models and patient outcomes
    corecore