17 research outputs found

    Injection moulding simulation of artificial test swarf (Micro PIM)

    Get PDF

    Development and Production of Artificial Test Swarf to Examine Wear Behavior of Running Engine Components - Geometrically Derived Designs

    Get PDF
    Subtractive manufacturing processes are usually accompanied by the occurrence of tiny flakes and swarf, which later on cause severe wear and damage, especially in moving components such as rolling or sliding bearings, pistons, etc. However, up until now, such detrimental effects have hardly been investigated. One reason is the lack of a definition of a typical design of debris particle. Therefore, the main goal of the project described in this paper was to elaborate a draft that defines standardized test particles. It had to be evaluated whether test particles could be adequately reproduced and whether they would reveal significant damage potential. Taking into account future mass fabrication, Micro Powder Injection Molding (MicroPIM) was chosen as a production method. Five different 3D designs of geometrically defined test particles were developed. The maximum size of each design was 1167 mm in green state; however, all samples shrank in size during sintering. Specially tailored feedstocks containing 42CrMo4 steel powders were used and the related molding, debinding and sintering procedures were developed. All particle geometries and related mold inserts were developed using a commercial software routine for the layout of runner systems, gate locations and ejector positions. The damage potential of the test particles was evaluated based on trials using journal bearing and shift valve test rigs. Although only a moderate degree of damage potential could be ascertained up until now, it can be expected that the artificial swarf will enable standardized wear test procedures to be developed

    Toward mass production of microtextured microdevices: linking rapid prototyping with microinjection molding

    Get PDF
    The possibility of manufacturing textured materials and devices, with surface properties controlled from the design stage, instead of being the result of machining processes or chemical attacks, is a key factor for the incorporation of advanced functionalities to a wide set of micro and nanosystems. Recently developed high-precision additive manufacturing technologies, together with the use of fractal models linked to computer-aided design tools, allow for a precise definition and control of final surface properties for a wide set of applications, although the production of larger series based on these resources is still an unsolved challenge. However, rapid prototypes, with controlled surface topography, can be used as original masters for obtaining micromold inserts for final large-scale series manufacture of replicas using microinjection molding. In this study, an original procedure is presented, aimed at connecting rapid prototyping with microinjection molding, for the mass production of two different microtextured microsystems, linked to tissue engineering tasks, using different thermoplastics as ultimate materials

    Development of a ceramic injection molding process for liquid jet nozzles to be applied for X-ray free-electron lasers

    No full text
    Serial crystallography experiments at X-ray free-electron lasers can utilize specially designed ceramic nozzles to generate a strongly focused liquid jet of sample. Several nozzle design options have been evaluated and a concept using a sharpened glass capillary mounted in a self-centering ceramic nozzles is detailed. Filling simulations and tool construction are given for micro ceramic injection molding manufacture of the nozzles. Produced parts are found to meet the specifications for nozzle dimensions and bearing features. Functionality tests show superior performance with respect to liquid jet straightness and reproducibility compared to flame polished glass nozzles
    corecore