6 research outputs found

    Bernstein’s levels of construction of movements applied to upper limb prosthetics

    No full text
    This article addresses the neuromotor control processes underlying the use of an upper limb prosthesis. Knowledge of these processes is used to make recommendations as to how prostheses and prosthesis training should develop to advance the functionality of upper limb prostheses. Obviously, modern-day prostheses are not optimally integrated in neuromotor functioning. The current article frames the problems underlying the handling of upper limb prosthetic devices in the hierarchical levels of construction of movement as proposed by Bernstein (1996). It follows that 1) postural disturbances resulting from prosthetic use should be considered in training and in the development of prosthetic devices, 2) training should take into account that new synergies have to be learned, 3) the feedback about the state of the prosthesis should improve, and 4) the alteration between different grip patterns should be made easy and fast. We observed that many of the current innovations in the prosthetics field are in line with the aim to integrate the prosthesis in sensory-motor functionin

    A structured overview of trends and technologies used in dynamic hand orthoses

    Get PDF
    The development of dynamic hand orthoses is a fast-growing field of research and has resulted in many different devices. A large and diverse solution space is formed by the various mechatronic components which are used in these devices. They are the result of making complex design choices within the constraints imposed by the application, the environment and the patient’s individual needs. Several review studies exist that cover the details of specific disciplines which play a part in the developmental cycle. However, a general collection of all endeavors around the world and a structured overview of the solution space which integrates these disciplines is missing. In this study, a total of 165 individual dynamic hand orthoses were collected and their mechatronic components were categorized into a framework with a signal, energy and mechanical domain. Its hierarchical structure allows it to reach out towards the different disciplines while connecting them with common properties. Additionally, available arguments behind design choices were collected and related to the trends in the solution space. As a result, a comprehensive overview of the used mechatronic components in dynamic hand orthoses is presented.Biomechatronics & Human-Machine ControlMechatronic Systems Desig
    corecore