25 research outputs found
Preconception and prenatal testing of biologic fathers for carrier status
The familial nature of genetic conditions often requires the testing of parents and other family members in order to determine the relationship of a genetic change to a clinical phenotype or to determine potential reproductive risks. When required as part of prenatal and preconceptional genetic testing services, time constraints and the costs and risks of alternatives to testing parents require that payers have established policies for how both maternal and paternal tests that inform fetal testing choices or the interpretation of fetal testing results will be covered
One Large Kindred Excludes a Locus for Multiple Endocrine Neoplasia Type 2A from about 25% of the Human Autosomal Genetic Map
This report presents pairwise linkage results from our search for the locus of the gene (MEN2A) for the multiple endocrine neoplasia type 2A (MEN-2A) syndrome in one large kindred (the N kindred), clearly segregating for an autosomal dominant form. About 25% of the autosomal genome is excluded when these new results are combined with those we have published previously. The genetic markers employed are distributed across at least 19 of the 22 autosomes. Seven genetic markers whose chromosomal locations are not yet established have also been studied
Indications for genetic referral: a guide for healthcare providers
Geneticists and genetic counselors are often asked what may be appropriate reasons for referral to a genetics service. The Professional Practice and Guidelines Committee of the American College of Medical Genetics has generated lists of the more common reasons for referral and provide them for use by genetics professionals and other healthcare providers for guidance. The lists are divided into pediatric, prenatal, and adult indications
Fragile X syndrome: Diagnostic and carrier testing
The following are the recommendations of the American College of Medical Genetics (ACMG) Professional Practice and Guidelines Committee, convened to assist health care professionals in making decisions regarding genetic diagnosis and testing. The purpose of this document is to provide a brief overview of fragile X syndrome (FXS), and to make recommendations that can serve as general guidelines to aid clinicians in making referrals for diagnostic and carrier testing for this condition. Fragile X syndrome is the most common cause of inherited mental retardation and is caused by a mutation in the X-linked FMR1 gene. DNA studies are used for testing individuals with symptoms of FXS and individuals at risk for carrying the mutation. Genotypes are determined by examining the size of the trinucleotide repeat segment and the methylation status of the FMR1 gene. These guidelines supersede the 1994 ACMG statement of the same name
SMPD4 regulates mitotic nuclear envelope dynamics and its loss causes microcephaly and diabetes
Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder with progressive congenital microcephaly and early death. SMPD4 encodes a sphingomyelinase that hydrolyses sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes (NPC). We refine the clinical phenotype of loss-of-function SMPD4 variants by describing five individuals from three unrelated families with longitudinal data due to prolonged survival. All individuals surviving beyond infancy developed insulin-dependent diabetes, besides presenting with a severe neurodevelopmental disorder and microcephaly, making diabetes one of the most frequent age-dependent non-cerebral abnormalities. We studied the function of SMPD4 at the cellular and organ levels. Knock-down of SMPD4 in human neural stem cells causes reduced proliferation rates and prolonged mitosis. Moreover, SMPD4 depletion results in abnormal nuclear envelope breakdown and reassembly during mitosis and decreased post-mitotic NPC insertion. Fibroblasts from affected individuals show deficient SMPD4-specific neutral sphingomyelinase activity, without changing (sub)cellular lipidome fractions, which suggests a local function of SMPD4 on the nuclear envelope. In embryonic mouse brain, knockdown of Smpd4 impairs cortical progenitor proliferation and induces premature differentiation by altering the balance between neurogenic and proliferative progenitor cell divisions. We hypothesize that, in individuals with SMPD4-related disease, nuclear envelope bending, which is needed to insert NPCs in the nuclear envelope, is impaired in the absence of SMPD4 and interferes with cerebral corticogenesis and survival of pancreatic beta cells.</p
Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI).
METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate.
FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally.
INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support.
FUNDING: Bill & Melinda Gates Foundation
Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016
A Case of Growth Hormone Use in Dyggve–Melchior–Clausen Syndrome
Short stature has many causes including genetic disease, skeletal dysplasias, endocrinopathies, familial short stature, and nutritional deficiencies. Recombinant growth hormone (rGH) therapy may be employed to improve stature based on the underlying etiology and growth velocity. Skeletal dysplasia in Dyggve–Melchior–Clausen (DMC) syndrome tends to be progressive, typically with hip involvement, and ultimately leads to bilateral dislocation of the hip joints. Here, we present a pediatric patient with short stature treated with rGH therapy, complicated by the development of debilitating, bilateral hip pain, and found to have DMC syndrome. Our patient had limited range of motion at several joints including the hips after receiving 6 months of rGH therapy. Given the timing of the patient’s rGH therapy and the progression of her disease, it is difficult to determine if there were any benefits and instead, is concerning for worsening of her skeletal dysplasia with rGH therapy use. Consequently, patients with severe short stature should have a thorough workup for genetic causes like DMC syndrome, before initiating rGH therapy to determine any potential benefits or harms of treatment