3 research outputs found

    Infusion extraction and measurement on CT images based on computer vision and neural network

    Get PDF
    This paper presents a new approach to the automated detection and quantification of pulmonary emphysema and pneumoconiosis using computed tomography images. The proposed method employs computer vision and neural network algorithms to improve the accuracy and speed of lung diagnosis, as well as the monitoring of emphysema and its changes over time. The study analyzes existing approaches and demonstrates the novelty of the proposed method. The paper reports high accuracy of emphysema extraction and size measurements based on three different patient cases, as evaluated by an expert, and the successful segmentation of pneumosclerosis. The proposed method has the potential to significantly improve medical image segmentation, particularly in the detection and diagnosis of diseases such as Chronic Obstructive Pulmonary Disease (COPD) and COVID-19. The study concludes that the proposed method may also be useful in other areas of medical imaging, contributing to the ongoing effort to develop new and improved methods for medical image analysis and interpretation

    Digital Platform of Yenisei Siberia β€œSiberiana”

    Get PDF
    Π‘Ρ‚Ρ€Π΅ΠΌΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ мСняСт ΠΎΠ±Π»ΠΈΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ сфСр. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΠΈ сСйчас всС Ρ‡Π°Ρ‰Π΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡ΠΈΡ‚Π°ΡŽΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ спСциализированныС Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Π΅ ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡ‹ для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Π΄Π°Π½Π½Ρ‹ΠΌΠΈ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Π΅ ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡ‹ ΠΈ прСдставили Π½ΠΎΠ²ΡƒΡŽ ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡƒ ΠΏΠΎΠ΄ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ΠΌ Β«Π‘ΠΈΠ±ΠΈΡ€ΠΈΠ°Π½Π°Β». Π­Ρ‚Π° ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠ° собираСт ΠΈ Ρ…Ρ€Π°Π½ΠΈΡ‚ Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Π΅ ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ ΠΈ историчСского наслСдия ЕнисСйской Π‘ΠΈΠ±ΠΈΡ€ΠΈ. Β«Π‘ΠΈΠ±ΠΈΡ€ΠΈΠ°Π½Π°Β» слуТит ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ Π½Π°ΡƒΡ‡Π½Ρ‹ΠΌ Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π΅ΠΌ-Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΡ€ΠΎΠΌ ΠΈ ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠΎΠΉ для использования, Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΡ… ΠΈ студСнчСских ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π°Ρ…. На Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠ° находится Π½Π° стадии развития ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ. ΠŸΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠ° Β«Π‘ΠΈΠ±ΠΈΡ€ΠΈΠ°Π½Π°Β» ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» ΡΡ‚Π°Ρ‚ΡŒ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ внимания ΡƒΡ‡Π΅Π½Ρ‹Ρ… всСго ΠΌΠΈΡ€Π°, Π΄Ρ€Π°ΠΉΠ²Π΅Ρ€ΠΎΠΌ развития исслСдований ΠΎ Π‘ΠΈΠ±ΠΈΡ€ΠΈ ΠΈ Ρ‡Π°ΡΡ‚ΡŒΡŽ сСти Π½Π°ΡƒΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ гуманитаристики. ΠŸΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠ° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π½Π° прСдоставлСниС исслСдоватСлям высококачСствСнных ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² своих ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΡ…, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ ΡΠΎΡ†ΠΈΠΎΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π°Ρ…The rapid development of digital technologies is changing the face of the educational and social sphere. Researchers are now increasingly choosing to use specialized digital platforms to work with data. In this article, we analyzed the existing regional digital platforms and introduced a new platform called Sibiriana. This platform collects and stores digital collections of the cultural and historical heritage of Yenisei Siberia. Sibiriana serves both as a scientific repository-aggregator and a platform for the use, analysis and processing of data in research and student projects. At the moment, the platform is at the stage of development and improvement. The Sibiriana platform has the potential to become the center of attention of scientists around the world, the driver of the development of research about Siberia and part of the network of scientific digital humanities. The platform aims to provide researchers with high-quality educational products that they can use in their research, educational and socio-cultural project

    Infusion extraction and measurement on CT images based on computer vision and neural network

    Full text link
    This paper presents a new approach to the automated detection and quantification of pulmonary emphysema and pneumoconiosis using computed tomography images. The proposed method employs computer vision and neural network algorithms to improve the accuracy and speed of lung diagnosis, as well as the monitoring of emphysema and its changes over time. The study analyzes existing approaches and demonstrates the novelty of the proposed method. The paper reports high accuracy of emphysema extraction and size measurements based on three different patient cases, as evaluated by an expert, and the successful segmentation of pneumosclerosis. The proposed method has the potential to significantly improve medical image segmentation, particularly in the detection and diagnosis of diseases such as Chronic Obstructive Pulmonary Disease (COPD) and COVID-19. The study concludes that the proposed method may also be useful in other areas of medical imaging, contributing to the ongoing effort to develop new and improved methods for medical image analysis and interpretation
    corecore