130 research outputs found

    Focused Proofreading: Efficiently Extracting Connectomes from Segmented EM Images

    Full text link
    Identifying complex neural circuitry from electron microscopic (EM) images may help unlock the mysteries of the brain. However, identifying this circuitry requires time-consuming, manual tracing (proofreading) due to the size and intricacy of these image datasets, thus limiting state-of-the-art analysis to very small brain regions. Potential avenues to improve scalability include automatic image segmentation and crowd sourcing, but current efforts have had limited success. In this paper, we propose a new strategy, focused proofreading, that works with automatic segmentation and aims to limit proofreading to the regions of a dataset that are most impactful to the resulting circuit. We then introduce a novel workflow, which exploits biological information such as synapses, and apply it to a large dataset in the fly optic lobe. With our techniques, we achieve significant tracing speedups of 3-5x without sacrificing the quality of the resulting circuit. Furthermore, our methodology makes the task of proofreading much more accessible and hence potentially enhances the effectiveness of crowd sourcing

    Annotating Synapses in Large EM Datasets

    Full text link
    Reconstructing neuronal circuits at the level of synapses is a central problem in neuroscience and becoming a focus of the emerging field of connectomics. To date, electron microscopy (EM) is the most proven technique for identifying and quantifying synaptic connections. As advances in EM make acquiring larger datasets possible, subsequent manual synapse identification ({\em i.e.}, proofreading) for deciphering a connectome becomes a major time bottleneck. Here we introduce a large-scale, high-throughput, and semi-automated methodology to efficiently identify synapses. We successfully applied our methodology to the Drosophila medulla optic lobe, annotating many more synapses than previous connectome efforts. Our approaches are extensible and will make the often complicated process of synapse identification accessible to a wider-community of potential proofreaders

    Synthesis and Verification of Digital Circuits using Functional Simulation and Boolean Satisfiability.

    Full text link
    The semiconductor industry has long relied on the steady trend of transistor scaling, that is, the shrinking of the dimensions of silicon transistor devices, as a way to improve the cost and performance of electronic devices. However, several design challenges have emerged as transistors have become smaller. For instance, wires are not scaling as fast as transistors, and delay associated with wires is becoming more significant. Moreover, in the design flow for integrated circuits, accurate modeling of wire-related delay is available only toward the end of the design process, when the physical placement of logic units is known. Consequently, one can only know whether timing performance objectives are satisfied, i.e., if timing closure is achieved, after several design optimizations. Unless timing closure is achieved, time-consuming design-flow iterations are required. Given the challenges arising from increasingly complex designs, failing to quickly achieve timing closure threatens the ability of designers to produce high-performance chips that can match continually growing consumer demands. In this dissertation, we introduce powerful constraint-guided synthesis optimizations that take into account upcoming timing closure challenges and eliminate expensive design iterations. In particular, we use logic simulation to approximate the behavior of increasingly complex designs leveraging a recently proposed concept, called bit signatures, which allows us to represent a large fraction of a complex circuit's behavior in a compact data structure. By manipulating these signatures, we can efficiently discover a greater set of valid logic transformations than was previously possible and, as a result, enhance timing optimization. Based on the abstractions enabled through signatures, we propose a comprehensive suite of novel techniques: (1) a fast computation of circuit don't-cares that increases restructuring opportunities, (2) a verification methodology to prove the correctness of speculative optimizations that efficiently utilizes the computational power of modern multi-core systems, and (3) a physical synthesis strategy using signatures that re-implements sections of a critical path while minimizing perturbations to the existing placement. Our results indicate that logic simulation is effective in approximating the behavior of complex designs and enables a broader family of optimizations than previous synthesis approaches.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61793/1/splaza_1.pd

    Analyzing Image Segmentation for Connectomics

    Get PDF
    Automatic image segmentation is critical to scale up electron microscope (EM) connectome reconstruction. To this end, segmentation competitions, such as CREMI and SNEMI, exist to help researchers evaluate segmentation algorithms with the goal of improving them. Because generating ground truth is time-consuming, these competitions often fail to capture the challenges in segmenting larger datasets required in connectomics. More generally, the common metrics for EM image segmentation do not emphasize impact on downstream analysis and are often not very useful for isolating problem areas in the segmentation. For example, they do not capture connectivity information and often over-rate the quality of a segmentation as we demonstrate later. To address these issues, we introduce a novel strategy to enable evaluation of segmentation at large scales both in a supervised setting, where ground truth is available, or an unsupervised setting. To achieve this, we first introduce new metrics more closely aligned with the use of segmentation in downstream analysis and reconstruction. In particular, these include synapse connectivity and completeness metrics that provide both meaningful and intuitive interpretations of segmentation quality as it relates to the preservation of neuron connectivity. Also, we propose measures of segmentation correctness and completeness with respect to the percentage of “orphan” fragments and the concentrations of self-loops formed by segmentation failures, which are helpful in analysis and can be computed without ground truth. The introduction of new metrics intended to be used for practical applications involving large datasets necessitates a scalable software ecosystem, which is a critical contribution of this paper. To this end, we introduce a scalable, flexible software framework that enables integration of several different metrics and provides mechanisms to evaluate and debug differences between segmentations. We also introduce visualization software to help users to consume the various metrics collected. We evaluate our framework on two relatively large public groundtruth datasets providing novel insights on example segmentations

    DVID: Distributed Versioned Image-Oriented Dataservice

    Get PDF
    Open-source software development has skyrocketed in part due to community tools like github.com, which allows publication of code as well as the ability to create branches and push accepted modifications back to the original repository. As the number and size of EM-based datasets increases, the connectomics community faces similar issues when we publish snapshot data corresponding to a publication. Ideally, there would be a mechanism where remote collaborators could modify branches of the data and then flexibly reintegrate results via moderated acceptance of changes. The DVID system provides a web-based connectomics API and the first steps toward such a distributed versioning approach to EM-based connectomics datasets. Through its use as the central data resource for Janelia's FlyEM team, we have integrated the concepts of distributed versioning into reconstruction workflows, allowing support for proofreader training and segmentation experiments through branched, versioned data. DVID also supports persistence to a variety of storage systems from high-speed local SSDs to cloud-based object stores, which allows its deployment on laptops as well as large servers. The tailoring of the backend storage to each type of connectomics data leads to efficient storage and fast queries. DVID is freely available as open-source software with an increasing number of supported storage options
    • …
    corecore