327 research outputs found

    Differences in both prevalence and titre of specific immunoglobulin E among children with asthma in affluent and poor communities within a large town in Ghana.

    Get PDF
    Background Reports from several African countries have noted an increasing prevalence of asthma in areas of extensive urbanization. Objective To investigate the relevance of allergen-specific sensitization and body mass index (BMI) to asthma/wheezing and exercise-induced bronchospasm (EIB) among children from affluent and poorer communities within a large town in Ghana. Methods Children with physician-diagnosed asthma and/or current wheezing aged 9-16 years (n=99; cases) from three schools with differing socio-economic backgrounds [urban affluent (UA), urban poor (UP) or suburban/rural (SR)] were recruited from a cross-sectional study (n=1848) in Kumasi, Ghana, and matched according to age, sex and area of residence with non-asthmatic/non-wheezy controls. We assayed sera for IgE antibodies to mite, cat, dog, cockroach, Ascaris and galactose-α-1,3-galactose. Results Children from the UA school had the lowest total serum IgE. However, cases from the UA school had a higher prevalence and mean titre of sIgE to mite (71.4%, 21.2IU/mL) when compared with controls (14.3%, 0.8IU/mL) or cases from UP (30%, 0.8IU/mL) and SR community (47.8%, 1.6IU/mL). While similar findings were observed with EIB in the whole population, among cases there was no difference in IgE antibody prevalence or titre between children with or without EIB. BMI was higher among UA children with and without asthma; in UP and SR communities, children with EIB (n=14) had a significantly higher BMI compared with children with asthma/wheezing without EIB (n=38) (18.2 vs. 16.4, respectively, P<0.01). Conclusions and Clinical Relevance In the relatively affluent school, asthma/wheezing and EIB were associated with high titre IgE antibodies to mite, decreased total IgE, and increased BMI. This contrasted with children in the urban poor school and suggests that changes relevant to a Western model of childhood asthma can occur within a short geographical distance within a large city in Africa. © 2011 Blackwell Publishing Ltd

    The discovery of potent, selective, and reversible inhibitors of the house dust mite peptidase allergen Der p 1: an innovative approach to the treatment of allergic asthma.

    Get PDF
    Blocking the bioactivity of allergens is conceptually attractive as a small-molecule therapy for allergic diseases but has not been attempted previously. Group 1 allergens of house dust mites (HDM) are meaningful targets in this quest because they are globally prevalent and clinically important triggers of allergic asthma. Group 1 HDM allergens are cysteine peptidases whose proteolytic activity triggers essential steps in the allergy cascade. Using the HDM allergen Der p 1 as an archetype for structure-based drug discovery, we have identified a series of novel, reversible inhibitors. Potency and selectivity were manipulated by optimizing drug interactions with enzyme binding pockets, while variation of terminal groups conferred the physicochemical and pharmacokinetic attributes required for inhaled delivery. Studies in animals challenged with the gamut of HDM allergens showed an attenuation of allergic responses by targeting just a single component, namely, Der p 1. Our findings suggest that these inhibitors may be used as novel therapies for allergic asthma

    Antigen-Specific IgG ameliorates allergic airway inflammation via Fcγ receptor IIB on dendritic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There have been few reports on the role of Fc receptors (FcRs) and immunoglobulin G (IgG) in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs) in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa.</p> <p>Methods</p> <p>In FcγRIIB deficient (KO) and C57BL/6 (WT) mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA). Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c<sup>+ </sup>MHC class II<sup>+ </sup>cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c<sup>+ </sup>APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs) <it>in vitro </it>were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs) differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL).</p> <p>Results</p> <p>In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c<sup>+ </sup>MHC class II<sup>+ </sup>cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c<sup>+ </sup>APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously.</p> <p>Conclusion</p> <p>Antigen-specific IgG ameliorates allergic airway inflammation via FcγRIIB on DCs.</p

    World Health Organization Expert Working Group: Recommendations for assessing morbidity associated with enteric pathogens

    Get PDF
    BACKGROUND: Diarrhoeal infections are one of the leading causes of child's mortality and morbidity. Vaccines against Shigella, enterotoxigenic E. coli (ETEC), norovirus and invasive non-typhoidal Salmonella are in clinical development, however, their full value in terms of short and long-term health and socio-economic burden needs to be evaluated and communicated, to rationalise investment in vaccine development, and deployment. While estimates of mortality of enteric infections exist, the long-term morbidity estimates are scarce and have not been systematically collected. METHODS: The World Health Organization (WHO) has convened a Burden of Enteric Diseases Morbidity Working Group (BoED MWG) who identified key workstreams needed to characterise the morbidity burden of enteric infections. The group also identified four criteria for the prioritisation of pathogens of which impact on long-term morbidity needs to be assessed. RESULTS: The BoED MWG suggested to identify and analyse the individual level data from historical datasets to estimate the impact of enteric infections and confounders on long-term morbidity, including growth faltering and cognitive impairment in children (workstream 1); to conduct a systematic review of evidence on the association of aetiology specific diarrhoea with short- and long- term impact on growth, including stunting, and possibly cognitive impairment in children, while accounting for potential confounders (workstream 2); and to conduct a systematic review of evidence on the association of aetiology specific diarrhoea with short- and long- term impact on health outcomes in adults. The experts prioritised four pathogens for this work: Campylobacter jejuni, ETEC (LT or ST), norovirus (G1 or G2), and Shigella (dysenteriae, flexneri, sonnei). CONCLUSIONS: The proposed work will contribute to improving the understanding of the impact of enteric pathogens on long-term morbidity. The timing of this work is critical as all four pathogens have vaccine candidates in the clinical pipeline and decisions about investments in development, manufacturing or vaccine procurement and use are expected to be made soon

    Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper

    Get PDF
    The exponential growth of precision diagnostic tools, including omic technologies, molecular diagnostics, sophisticated genetic and epigenetic editing, imaging and nano-technologies and patient access to extensive health care, has resulted in vast amounts of unbiased data enabling in-depth disease characterization. New disease endotypes have been identified for various allergic diseases and triggered the gradual transition from a disease description focused on symptoms to identifying biomarkers and intricate pathogenetic and metabolic pathways. Consequently, the current disease taxonomy has to be revised for better categorization. This European Academy of Allergy and Clinical Immunology Position Paper responds to this challenge and provides a modern nomenclature for allergic diseases, which respects the earlier classifications back to the early 20th century. Hypersensitivity reactions originally described by Gell and Coombs have been extended into nine different types comprising antibody- (I-III), cell-mediated (IVa-c), tissue-driven mechanisms (V-VI) and direct response to chemicals (VII). Types I-III are linked to classical and newly described clinical conditions. Type IVa-c are specified and detailed according to the current understanding of T1, T2 and T3 responses. Types V-VI involve epithelial barrier defects and metabolic-induced immune dysregulation, while direct cellular and inflammatory responses to chemicals are covered in type VII. It is notable that several combinations of mixed types may appear in the clinical setting. The clinical relevance of the current approach for allergy practice will be conferred in another article that will follow this year, aiming at showing the relevance in clinical practice where various endotypes can overlap and evolve over the lifetime

    Candida soluble cell wall β-glucan facilitates ovalbumin-induced allergic airway inflammation in mice: Possible role of antigen-presenting cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although fungi have been implicated as initiating/deteriorating factors for allergic asthma, their contributing components have not been fully elucidated. We previously isolated soluble β-glucan from <it>Candida albicans </it>(CSBG) (Ohno et al., 2007). In the present study, the effects of CSBG exposure on airway immunopathology in the presence or absence of other immunogenic allergen was investigated <it>in vivo</it>, and their cellular mechanisms were analyzed both <it>in vivo </it>and <it>in vitro</it>.</p> <p>Methods</p> <p><it>In vivo</it>, ICR mice were divided into 4 experimental groups: vehicle, CSBG (25 μg/animal), ovalbumin (OVA: 2 μg/animal), and CSBG + OVA were repeatedly administered intratracheally. The bronchoalveolar lavage cellular profile, lung histology, levels of cytokines and chemokines in the lung homogenates, the expression pattern of antigen-presenting cell (APC)-related molecules in the lung digests, and serum immunoglobulin values were studied. <it>In vitro</it>, the impacts of CSBG (0–12.5 μg/ml) on the phenotype and function of immune cells such as splenocytes and bone marrow-derived dendritic cells (BMDCs) were evaluated in terms of cell proliferation, the surface expression of APC-related molecules, and OVA-mediated T-cell proliferating activity.</p> <p>Results</p> <p><it>In vivo</it>, repeated pulmonary exposure to CSBG induced neutrophilic airway inflammation in the absence of OVA, and markedly exacerbated OVA-related eosinophilic airway inflammation with mucus metaplasia in mice, which was concomitant with the amplified lung expression of Th2 cytokines and IL-17A and chemokines related to allergic response. Exposure to CSBG plus OVA increased the number of cells bearing MHC class II with or without CD80 in the lung compared to that of others. <it>In vitro</it>, CSBG significantly augmented splenocyte proliferation in the presence or absence of OVA. Further, CSBG increased the expression of APC-related molecules such as CD80, CD86, and DEC205 on BMDCs and amplified OVA-mediated T-cell proliferation through BMDCs.</p> <p>Conclusion</p> <p>CSBG potentiates allergic airway inflammation with maladaptive Th immunity, and this potentiation was associated with the enhanced activation of APCs including DC.</p

    Helminth-induced Th2 cell dysfunction is distinct from exhaustion and is maintained in the absence of antigen

    Get PDF
    T cell-intrinsic regulation, such as anergy, adaptive tolerance and exhaustion, is central to immune regulation. In contrast to Type 1 and Type 17 settings, knowledge of the intrinsic fate and function of Th2 cells in chronic Type 2 immune responses is lacking. We previously showed that Th2 cells develop a PD-1/PD-L2-dependent intrinsically hypo-responsive phenotype during infection with the filarial nematode Litomosoides sigmodontis, denoted by impaired functionality and parasite killing. This study aimed to elucidate the transcriptional changes underlying Th2 cell-intrinsic hypo-responsiveness, and whether it represents a unique and stable state of Th2 cell differentiation. We demonstrated that intrinsically hypo-responsive Th2 cells isolated from L. sigmodontis infected mice stably retained their dysfunctional Th2 phenotype upon transfer to naïve recipients, and had a divergent transcriptional profile to classical Th2 cells isolated prior to hypo-responsiveness and from mice exposed to acute Type 2 stimuli. Hypo-responsive Th2 cells displayed a distinct transcriptional profile to exhausted CD4+ T cells, but upregulated Blimp-1 and the anergy/regulatory-associated transcription factors Egr2 and c-Maf, and shared characteristics with tolerised T cells. Hypo-responsive Th2 cells increased mRNA expression of the soluble regulatory factors Fgl2, Cd38, Spp1, Areg, Metrnl, Lgals3, and Csf1, and a subset developed a T-bet+IFN-γ+ Th2/Th1 hybrid phenotype, indicating that they were not functionally inert. Contrasting with their lost ability to produce Th2 cytokines, hypo-responsive Th2 cells gained IL-21 production and IL-21R blockade enhanced resistance to L. sigmodontis. IL-21R blockade also increased the proportion of CD19+PNA+ germinal centre B cells and serum levels of parasite specific IgG1. This indicates a novel regulatory role for IL-21 during filarial infection, both in controlling protection and B cell responses. Thus, Th2 cell-intrinsic hypo-responsiveness is a distinct and stable state of Th2 cell differentiation associated with a switch from a classically active IL-4+IL-5+ Th2 phenotype, to a non-classical dysfunctional and potentially regulatory IL-21+Egr2+c-Maf+Blimp-1+IL-4loIL-5loT-bet+IFN-γ+ Th2 phenotype. This divergence towards alternate Th2 phenotypes during chronicity has broad implications for the outcomes and treatment of chronic Type 2-related infections and diseases
    corecore