4 research outputs found

    Network rewiring models

    No full text

    Classical and nonclassical time dilation for quantum clocks

    Get PDF
    Proper time, ideal clocks, and boosts are well understood classically, but subtleties arise in quantum physics. We show that quantum clocks set in motion via momentum boosts do not witness classical time dilation. However, using velocity boosts we find the ideal behavior in both cases, where the quantum clock and classical observer are set in motion. Without internal state-dependent forces additional effects arise. As such, we derive observed frequency shifts in ion trap atomic clocks, indicating a small additional shift, and also show the emergence of nonideal behavior in a theoretical clock model

    Optimal estimation of time-dependent gravitational fields with quantum optomechanical systems

    Get PDF
    We study the fundamental sensitivity that can be achieved with an ideal optomechanical system in the nonlinear regime for measurements of time-dependent gravitational fields. Using recently developed methods to solve the dynamics of a nonlinear optomechanical system with a time-dependent Hamiltonian, we compute the quantum Fisher information for linear displacements of the mechanical element due to gravity. We demonstrate that the sensitivity can not only be further enhanced by injecting squeezed states of the cavity field, but also by modulating the light--matter coupling of the optomechanical system. We specifically apply our results to the measurement of gravitational fields from small oscillating masses, where we show that, in principle, the gravitational field of an oscillating nano-gram mass can be detected based on experimental parameters that will likely be accessible in the near-term future. Finally, we identify the experimental parameter regime necessary for gravitational wave detection with a quantum optomechanical sensor

    Quantum limits to gravity estimation with optomechanics

    No full text
    We present a table-top quantum estimation protocol to measure the gravitational acceleration g by using an optomechanical cavity. In particular, we exploit the nonlinear quantum light-matter interaction between an optical field and a massive mirror acting as mechanical oscillator. The gravitational field influences the system dynamics affecting the phase of the cavity field during the interaction. Reading out such a phase carried by the radiation leaking from the cavity, we provide an estimate of the gravitational acceleration through interference measurements. Contrary to previous studies, having adopted a fully quantum description, we are able to propose a quantum analysis proving the ultimate bound to the estimability of the gravitational acceleration and verifying optimality of homodyne detection. Noticeably, thanks to the light-matter decoupling at the measurement time, no initial cooling of the mechanical oscillator is demanded in principle
    corecore