8 research outputs found

    Separability Criteria and Entanglement Measures for Pure States of N Identical Fermions

    Full text link
    The study of the entanglement properties of systems of N fermions has attracted considerable interest during the last few years. Various separability criteria for pure states of N identical fermions have been recently discussed but, excepting the case of two-fermions systems, these criteria are difficult to implement and of limited value from the practical point of view. Here we advance simple necessary and sufficient separability criteria for pure states of N identical fermions. We found that to be identified as separable a state has to comply with one single identity involving either the purity or the von Neumann entropy of the single-particle reduced density matrix. These criteria, based on the verification of only one identity, are drastically simpler than the criteria discussed in the recent literature. We also derive two inequalities verified respectively by the purity and the entropy of the single particle, reduced density matrix, that lead to natural entanglement measures for N-fermion pure states. Our present considerations are related to some classical results from the Hartree-Fock theory, which are here discussed from a different point of view in order to clarify some important points concerning the separability of fermionic pure states.Comment: 6 pages, 0 figure

    Relativistic Klein-Gordon charge effects by information-theoretic measures

    Full text link
    The charge spreading of ground and excited states of Klein-Gordon particles moving in a Coulomb potential is quantitatively analyzed by means of the ordinary moments and the Heisenberg measure as well as by use of the most relevant information-theoretic measures of global (Shannon entropic power) and local (Fisher's information) types. The dependence of these complementary quantities on the nuclear charge Z and the quantum numbers characterizing the physical states is carefully discussed. The comparison of the relativistic Klein-Gordon and non-relativistic Schrodinger values is made. The non-relativistic limits at large principal quantum number n and for small values of Z are also reached.Comment: Accepted in New Journal of Physic

    Additivity and non-additivity of multipartite entanglement measures

    Full text link
    We study the additivity property of three multipartite entanglement measures, i.e. the geometric measure of entanglement (GM), the relative entropy of entanglement and the logarithmic global robustness. First, we show the additivity of GM of multipartite states with real and non-negative entries in the computational basis. Many states of experimental and theoretical interests have this property, e.g. Bell diagonal states, maximally correlated generalized Bell diagonal states, generalized Dicke states, the Smolin state, and the generalization of D\"{u}r's multipartite bound entangled states. We also prove the additivity of other two measures for some of these examples. Second, we show the non-additivity of GM of all antisymmetric states of three or more parties, and provide a unified explanation of the non-additivity of the three measures of the antisymmetric projector states. In particular, we derive analytical formulae of the three measures of one copy and two copies of the antisymmetric projector states respectively. Third, we show, with a statistical approach, that almost all multipartite pure states with sufficiently large number of parties are nearly maximally entangled with respect to GM and relative entropy of entanglement. However, their GM is not strong additive; what's more surprising, for generic pure states with real entries in the computational basis, GM of one copy and two copies, respectively, are almost equal. Hence, more states may be suitable for universal quantum computation, if measurements can be performed on two copies of the resource states. We also show that almost all multipartite pure states cannot be produced reversibly with the combination multipartite GHZ states under asymptotic LOCC, unless relative entropy of entanglement is non-additive for generic multipartite pure states.Comment: 45 pages, 4 figures. Proposition 23 and Theorem 24 are revised by correcting a minor error from Eq. (A.2), (A.3) and (A.4) in the published version. The abstract, introduction, and summary are also revised. All other conclusions are unchange
    corecore