420 research outputs found

    First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake

    Get PDF
    We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at 3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang'E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation

    Direct observations of a surface eigenmode of the dayside magnetopause

    Get PDF
    The abrupt boundary between a magnetosphere and the surrounding plasma, the magnetopause, has long been known to support surface waves. It was proposed that impulses acting on the boundary might lead to a trapping of these waves on the dayside by the ionosphere, resulting in a standing wave or eigenmode of the magnetopause surface. No direct observational evidence of this has been found to date and searches for indirect evidence have proved inconclusive, leading to speculation that this mechanism might not occur. By using fortuitous multipoint spacecraft observations during a rare isolated fast plasma jet impinging on the boundary, here we show that the resulting magnetopause motion and magnetospheric ultra-low frequency waves at well-defined frequencies are in agreement with and can only be explained by the magnetopause surface eigenmode. We therefore show through direct observations that this mechanism, which should impact upon the magnetospheric system globally, does in fact occur

    Double-blinded, randomized controlled trial comparing real versus placebo acupuncture to improve tolerance of diagnostic esophagogastroduodenoscopy without sedation: a study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sedation prior to performance of diagnostic esophagogastroduodenoscopy (EGDE) is widespread and increases patient comfort. But 98% of all serious adverse events during EGDEs are ascribed to sedation. The S3 guideline for sedation procedures in gastrointestinal endoscopy published in 2008 in Germany increases patient safety by standardization. These new regulations increase costs because of the need for more personnel and a prolonged discharge procedure after examinations with sedation. Many patients have difficulties to meet the discharge criteria regulated by the S3 guideline, e.g. the call for a second person to escort them home, to resign from driving and working for the rest of the day, resulting in a refusal of sedation. Therefore, we would like to examine if an acupuncture during elective, diagnostic EGDEs could increase the comfort of patients refusing systemic sedation.</p> <p>Methods/Design</p> <p>A single-center, double blinded, placebo controlled superiority trial to compare the success rates of elective, diagnostic EGDEs with real and placebo acupuncture. All patients aged 18 years or older scheduled for elective, diagnostic EGDE who refuse a systemic sedation are eligible. 354 patients will be randomized. The primary endpoint is the rate of successful EGDEs with the randomized technique. Intervention: Real or placebo acupuncture before and during EGDE. Duration of study: Approximately 24 months.</p> <p>Discussion</p> <p>Organisation/Responsibility The ACUPEND - Trial will be conducted in accordance with the protocol and in compliance with the moral, ethical, and scientific principles governing clinical research as set out in the Declaration of Helsinki (1989) and Good Clinical Practice (GCP). The Interdisciplinary Endoscopy Center (IEZ) of the University Hospital Heidelberg is responsible for design and conduct of the trial, including randomization and documentation of patients' data. Data management and statistical analysis will be performed by the independent Institute for Medical Biometry and Informatics (IMBI) and the Center of Clinical Trials (KSC) at the Department of General, Visceral and Transplantation Surgery, University of Heidelberg.</p> <p>Trial registration</p> <p>The trial is registered at Germanctr.de (DRKS00000164) on December 10<sup>th </sup>2009. The first patient was randomized on February 2<sup>nd </sup>2010.</p

    In-Flight Calibration Processes for the MMS Fluxgate Magnetometers

    Get PDF
    The calibration effort for the Magnetospheric Multiscale Mission (MMS) Analog Fluxgate (AFG) and DigitalFluxgate (DFG) magnetometers is a coordinated effort between three primary institutions: University of California, LosAngeles (UCLA); Space Research Institute, Graz, Austria (IWF); and Goddard Space Flight Center (GSFC). Since thesuccessful deployment of all 8 magnetometers on 17 March 2015, the effort to confirm and update the groundcalibrations has been underway during the MMS commissioning phase. The in-flight calibration processes evaluatetwelve parameters that determine the alignment, orthogonalization, offsets, and gains for all 8 magnetometers usingalgorithms originally developed by UCLA and the Technical University of Braunschweig and tailored to MMS by IWF,UCLA, and GSFC. We focus on the processes run at GSFC to determine the eight parameters associated with spin tonesand harmonics. We will also discuss the processing flow and interchange of parameters between GSFC, IWF, and UCLA.IWF determines the low range spin axis offsets using the Electron Drift Instrument (EDI). UCLA determines the absolutegains and sensor azimuth orientation using Earth field comparisons. We evaluate the performance achieved for MMS andgive examples of the quality of the resulting calibrations
    corecore