286 research outputs found

    Pulmonary hypertension in infants with congenital heart defects: are leukotrienes involved?

    Get PDF
    The circulating levels of leukotriene E4 in infants with congenital heart defects, increased pulmonary blood flow and pulmonary arterial hypertension, were determined and compared with infants with decreased pulmonary blood flow (Tetralogy of Fallot). There was no correlation (r=0.38) between the pulmonary arterial pressure (56 ± 4 mmHg) and the leukotriene E4 levels (1.37 ± 0.67 ng/ml blood) measured in peripheral blood samples from the hypertensive group prior to surgery. There was considerable variation in the detectable leukotriene E4 levels in blood samples from different patients. The levels detected in the blood samples between the two groups of patients was similar. These data suggest that neither the surgical repair during cardiopulmonary bypass nor the pulmonary hypertension appeared to modify the leukotriene E4 blood levels in the small number of patients studied

    Cold-spray of aluminium with and without ceramic combined with plasma electrolytic oxidation

    Get PDF
    Cold spraying is developing rapidly and has a wide spectrum of applications: protection against corrosion, preparation of high conductivity coatings, repair of damaged metal components, metal additive manufacturing, thermal management. Plasma electrolytic oxidation (PEO) is widely used to improve the corrosion and wear resistance of lightweight metals such as aluminum alloys by the formation of a ceramic oxide layer. When applied on aluminium alloys, the PEO oxide layer is mainly composed with γ-Al2O3 (in major proportion) and corundum, α-Al2O3. Increasing the proportion of corundum is an objective in order to improve the corrosion and wear resistance properties. For this purpose, a duplex treatment combining cold spray and PEO is investigate [1]. Particularly it consists in firstly cold spraying an aluminium coating containing a certain amount of α-Al2O3 which is then PEO processed. Our results show that, while the projected alpha alumina particles are observable on cross sections of untreated samples and for short PEO treatment times (lower than 20 min), this is no longer the case for long PEO treatment times (over than 35 min) (see the figure). In fact, under these conditions, it is no longer possible to observe the alpha alumina particles in the PEO layer. More interesting still, the proportion of alpha alumina in the layers resulting from a duplex treatment is greater than that obtained in the layer resulting from a cold spray treatment by scanning electron microscope

    Full-scale validation of bio-recycled asphalt mixtures for road pavements

    Get PDF
    Recycling of asphalt has become a well-established practice in many countries, however the road pavement industry remains a bulk consumer of extracted raw materials. Novel solutions that find root in circular economy concepts and life‐cycle approaches are needed in order to enable optimisation of infrastructure resource efficiency, starting from the design stage and spanning the whole value chain in the construction sector. Itis within this framework that the present study presents a full-scale validation of asphalt mixtures specifically designed to ensure durability of flexible road pavements and at the same time enabling the reuse of reclaimed asphalt pavement (RAP) through the incorporation of bio-materials as recycling agent. These bio-recycled asphalt mixtures have been first designed in laboratory and subsequently validated in a real scale experiment conducted at the accelerated pavement testing facilities at IFSTTAR. Four pavement sections were evaluated: three test sections with innovative bio-materials, and a reference section with a conventional, high modulus asphalt mix (EME2). Two tests were realized: a rutting test and a fatigue test and for each of them the evolution of bio-recycled asphalt mixtures properties as well as the pavement deteriorations were recorded and studied. Evolution of the bio-asphalt mixtures was monitored for a 5 months period after paving by a bespoke nondestructive micro-coring, extracting and recovering methodology developed at the Western Research Institute (WRI). The structural health of the pavement sections was monitored through periodic falling weight deflectometer (FWD) as well as with strain gages and temperature sensors. As a result the three tailored bio-asphalt mixtures performed similarly or better than the control mixture, both in terms of property evolutions and durability

    An analysis of C.difficile Environmental Contamination During and Following Treatment for C.difficile Infection

    Get PDF
    Background: Lower Clostridium difficile spore counts in feces from C difficile infection (CDI) patients treated with fidaxomicin versus vancomycin have been observed. We aimed to determine whether environmental contamination is lower in patients treated with fidaxomicin compared with those treated with vancomycin/metronidazole. Methods: The CDI cases were recruited at 4 UK hospitals (Leeds, Bradford, and London [2 centers]). Environmental samples (5 room sites) were taken pretreatment and at 2–3, 4–5, 6–8, and 9–12 days of treatment, end of treatment (EOT), and post-EOT. Fecal samples were collected at diagnosis and as often as produced thereafter. Swabs/feces were cultured for C difficile; percentage of C difficile-positive samples and C difficile bioburden were compared between different treatment arms at each time point. Results: Pre-EOT (n = 244), there was a significant reduction in environmental contamination (≥1 site positive) around fidaxomicin versus vancomycin/metronidazole recipients at days 4–5 (30% vs 50% recipients, P = .04) and at days 9–12 (22% vs 49%, P = .005). This trend was consistently seen at all other timepoints, but it was not statistically significant. No differences were seen between treatment groups post-EOT (n = 76). Fidaxomicin-associated fecal positivity rates and colony counts were consistently lower than those for vancomycin/metronidazole from days 4 to 5 of treatment (including post-EOT); however, the only significant difference was in positivity rate at days 9–12 (15% vs 55%, P = .03). Conclusions: There were significant reductions in C difficile recovery from both feces and the environment around fidaxomicin versus vancomycin/metronidazole recipients. Therefore, fidaxomicin treatment may lower the C difficile transmission risk by reducing excretion and environmental contamination

    Performance of a sustainable asphalt mix incorporating high RAP content and novel bio-derived binder

    Get PDF
    The recent drive to find ways to increase sustainability and decrease costs in asphalt paving has led researchers to find innovative ways to incorporate more recycled materials and bio-derived binders into mixes with varying success. A new novel bio-derived binder made from refined pine chemistry stabilised with a polymer can increase the sustainability of asphalt mixes while maintaining pavement performance. Laboratory performance testing was conducted on asphalt mixes containing 50% Reclaimed Asphalt Pavement (RAP) by mix weight and the novel bio-derived binder. Results show that the bio-derived binder outperforms the conventional 50/70 pen grade binder mixes with respect to resistance to thermal cracking and adequately passes all requirements for pavements with 20-year design loadings of less than 30 million ESALs. This research shows that asphalt mixes containing 50% RAP and a bio-derived binder can be designed to pass performance criteria at low, intermediate, and high temperatures without the need of neat bitumen
    corecore