276 research outputs found

    Electronic spectrum and superconductivity in the tt-JJ model on the honeycomb lattice

    Full text link
    A microscopic theory of electronic spectrum and superconductivity within the tt-JJ model on the honeycomb lattice is formulated. The Dyson equation for the normal and anomalous Green functions for the two-band model in terms of the Hubbard operators is derived by applying the Mori-type projection technique. The self-energy is evaluated in the self-consistent Born approximation for electron scattering on spin and charge fluctuations induced by the kinematical interaction for the Hubbard operators. Superconducting pairing mediated by the antiferromagnetic exchange and spin fluctuations is discussed.Comment: 11 pages, 2 figures. arXiv admin note: text overlap with arXiv:1803.0314

    Superconductivity in the t-J model

    Full text link
    A comparison of microscopic theories of superconductivity in the limit of strong electron correlations is presented. We consider results for the two-dimensional t-J model obtained within the projection technique for the Green functions in terms of the Hubbard operators and the slave-fermion representation for the RVB state. It is argued that the latter approach resulting in the odd-symmetry p-wave pairing for fermions is inadequate.Comment: 11 pages, RevTex, 1 figure, to appear in Condensed Matter Physics v.5, No.4 (2002)(Lviv, Ukraine) v.2: corrected typo

    Spin dynamics in the generalized ferromagnetic Kondo model for manganites

    Full text link
    Dynamical spin susceptibility is calculated for the generalized ferromagnetic Kondo model which describes itinerant ege_{g} electrons interacting with localized t2gt_{2g} electrons with antiferromagnetic coupling. The calculations done in the mean field approximation show that the spin-wave spectrum of the system in ferromagnetic state has two branches, acoustic and optic ones. Self-energy corrections to the spectrum are considered and the acoustic spin-wave damping is evaluated

    Optical and dc conductivities of cuprates: Spin-fluctuation scattering in the t-J model

    Full text link
    A microscopic theory of the electrical conductivity σ(ω)\sigma(\omega) within the t-J model is developed. An exact representation for σ(ω)\sigma(\omega) is obtained using the memory-function technique for the relaxation function in terms of the Hubbard operators, and the generalized Drude law is derived. The relaxation rate due to the decay of charge excitations into particle-hole pairs assisted by antiferromagnetic spin fluctuations is calculated in the mode-coupling approximation. Using results for the spectral function of spin excitations calculated previously, the relaxation rate and the optical and dc conductivities are calculated in a broad region of doping and temperatures. The reasonable agreement of the theory with experimental data for cuprates proves the important role of spin-fluctuation scattering in the charge dynamics.Comment: 13 pages,15 figures, v.2, publication referenc

    Superconductivity of strongly correlated electrons on the honeycomb lattice

    Full text link
    A microscopic theory of the electronic spectrum and of superconductivity within the t-J model on the honeycomb lattice is developed. We derive the equations for the normal and anomalous Green functions in terms of the Hubbard operators by applying the projection technique. Superconducting pairing of d + id'-type mediated by the antiferromagnetic exchange is found. The superconducting Tc as a function of hole doping exhibits a two-peak structure related to the van Hove singularities of the density of states for the two-band t-J model. At half-filling and for large enough values of the exchange coupling, gapless superconductivity may occur. For small doping the coexistence of antiferromagnetic order and superconductivity is suggested. It is shown that the s-wave pairing is prohibited, since it violates the constraint of no-double-occupancy.Comment: 10 pages, 3 figures, to be published in Eur. Phys. J.

    Dynamic spin susceptibility of superconducting cuprates: A microscopic theory of the magnetic resonance mode

    Full text link
    A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q = \pi(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above TcT_c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found.Comment: 15 pages, 20 figures, references adde
    corecore