59 research outputs found
Methodological considerations for fMRI studies of pitch processing
Four functional magnetic resonance imaging (fMRI) studies of pitch processing in auditory cortex were designed to reduce the impact of a number of methodological issues that have hitherto limited previous research findings. Due to adaptation effects, it is necessary to repeatedly present short stimulus bursts rather than long-duration stimuli. Thus, conventionally, in neuroimaging studies of pitch perception, a number of short bursts of the pitch stimulus, separated by silent intervals, are compared to a Gaussian noise presented in the same way. The results of the first experiment indicate that replacing the silent intervals with an energetically matched noise context increases the pitch-specific response by removing the 'energy-onset response' that saturates the overall response if silent intervals are used. In the second experiment, a particular pitch-evoking stimulus, iterated ripple noise (IRN), which is commonly used in neuroimaging studies of pitch perception, was examined. Hall and Plack (Cerebral Cortex 2009;19:576-585) showed that IRN contains slowly varying spectro-temporal features unrelated to pitch, and suggested that these features could account for at least some of the cortical activation produced by IRN. The results support this hypothesis, but also suggest that there is an additional pitch-dependent effect in the same region of auditory cortex.The third experiment assessed the effect of using a different control stimulus to the usual Gaussian noise. The new matched controls were a pulse train with randomly jittered inter-pulse intervals and a random-phase unresolved harmonic complex tone. These low-pitch-salience controls were compared to a regular interval pulse train, which is identical to a cosine-phase unresolved harmonic complex tone. The third experiment did not provide evidence for sensitivity to pitch-salience in pitch-responsive regions of auditory cortex. The fourth and final experiment was a factorial design seeking to answer two main questions: 1) Is the pitch-sensitive region of auditory cortex responsive to the salience of other sound features (e.g. modulation)? 2) Are the responses to pitch and to modulation within this region co-located? Two different pitch-evoking stimuli with different levels of pitch salience were used, presented in a noise context. Results indicate that the pitch-sensitive region contains representations for both pitch and modulation. Furthermore, there was no evidence for an interaction between pitch and modulation, suggesting that the two responses are independent. Overall, the results suggest that careful stimulus design, and appropriate experimental control, is necessary to obtain reliable information on the cortical response to pitch. In addition, the results have shed further light on the likely neural substrates of pitch processing in the cortex.EThOS - Electronic Theses Online ServiceMRC Institute of Hearing ResearchGBUnited Kingdo
Defining an ageing-related pathology, disease or syndrome: International Consensus Statement
Around the world, individuals are living longer, but an increased average lifespan does not always equate to an increased health span. With advancing age, the increased prevalence of ageing-related diseases can have a significant impact on health status, functional capacity and quality of life. It is therefore vital to develop comprehensive classification and staging systems for ageing-related pathologies, diseases and syndromes. This will allow societies to better identify, quantify, understand and meet the healthcare, workforce, well-being and socioeconomic needs of ageing populations, whilst supporting the development and utilisation of interventions to prevent or to slow, halt or reverse the progression of ageing-related pathologies. The foundation for developing such classification and staging systems is to define the scope of what constitutes an ageing-related pathology, disease or syndrome. To this end, a consensus meeting was hosted by the International Consortium to Classify Ageing-Related Pathologies (ICCARP), on February 19, 2024, in Cardiff, UK, and was attended by 150 recognised experts. Discussions and voting were centred on provisional criteria that had been distributed prior to the meeting. The participants debated and voted on these. Each criterion required a consensus agreement of ≥ 70% for approval. The accepted criteria for an ageing-related pathology, disease or syndrome were (1) develops and/or progresses with increasing chronological age; (2) should be associated with, or contribute to, functional decline or an increased susceptibility to functional decline and (3) evidenced by studies in humans. Criteria for an ageing-related pathology, disease or syndrome have been agreed by an international consortium of subject experts. These criteria will now be used by the ICCARP for the classification and ultimately staging of ageing-related pathologies, diseases and syndromes
Subcortical representation of musical dyads: individual differences and neural generators
When two notes are played simultaneously they form a musical dyad. The sensation of pleasantness, or "consonance", of a dyad is likely driven by the harmonic relation of the frequency components of the combined spectrum of the two notes. Previous work has demonstrated a relation between individual preference for consonant over dissonant dyads, and the strength of neural temporal coding of the harmonicity of consonant relative to dissonant dyads as measured using the electrophysiological "frequency-following response" (FFR). However, this work also demonstrated that both these variables correlate strongly with musical experience. The current study was designed to determine whether the relation between consonance preference and neural temporal coding is maintained when controlling for musical experience. The results demonstrate that strength of neural coding of harmonicity is predictive of individual preference for consonance even for non-musicians. An additional purpose of the current study was to assess the cochlear generation site of the FFR to low-frequency dyads. By comparing the reduction in FFR strength when high-pass masking noise was added to the output of a model of the auditory periphery, the results provide evidence for the FFR to low-frequency dyads resulting in part from basal cochlear generators. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
- …