1,720 research outputs found
Band gaps in the relaxed linear micromorphic continuum
In this note we show that the relaxed linear micromorphic model recently
proposed by the authors can be suitably used to describe the presence of
band-gaps in metamaterials with microstructures in which strong contrasts of
the mechanical properties are present (e.g. phononic crystals and lattice
structures). This relaxed micromorphic model only has 6 constitutive parameters
instead of 18 parameters needed in Mindlin- and Eringen-type classical
micromorphic models. We show that the onset of band-gaps is related to a unique
constitutive parameter, the Cosserat couple modulus which starts to
account for band-gaps when reaching a suitable threshold value. The limited
number of parameters of our model, as well as the specific effect of some of
them on wave propagation can be seen as an important step towards indirect
measurement campaigns
How kinetics drives the two- to three-dimensional transition in semiconductor strained heterostructures: the case of InAs/GaAs(001)
The two- to three-dimensional growth transition in the InAs/GaAs(001)
heterostructure has been investigated by atomic force microscopy. The kinetics
of the density of three dimensional quantum dots evidences two transition
thresholds at 1.45 and 1.59 ML of InAs coverage, corresponding to two separate
families, small and large. Based on the scaling analysis, such families are
characterized by different mechanisms of aggregation, involving the change of
the critical nucleus size. Remarkably, the small ones give rise to a wealth of
"monomers" through the erosion of the step edges, favoring the explosive
nucleation of the large ones.Comment: 10 pages, 3 figures. Submitted to Phys. Rev. Let
Characterization of CMOS Spiral Inductors
In this work "full-wave" simulations of integrated inductors are presented and compared with measurements of fabricated CMOS chips. The good agreement between measurements and simulations demonstrates the accuracy of the tool, which is, hence, a cheaper alternative to experimental characterization. Furthermore, the proposed approach may give precious hints for performance improvements, by making internal device fields and currents available for the VLSI designer and providing compact, most effective, equivalent models
Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics
Describing the emerging macro-scale behavior by accounting for the micro-scale phenomena calls for microstructure-informed continuum models accounting properly for the deformation mechanisms identifiable at the micro-scale. Classical continuum theory, in contrast to the micromorphic continuum theory, is unable to take into account the effects of complex kinematics and distribution of elastic energy in internal deformation modes within the continuum material point. In this paper, we derive a geometrically nonlinear micromorphic continuum theory on the basis of granular mechanics, utilizing grain-scale deformation as the fundamental building block. The definition of objective kinematic descriptors for relative motion is followed by Piola’s ansatz for micro–macro-kinematic bridging and, finally, by a limit process leading to the identification of the continuum stiffness parameters in terms of few micro-scale constitutive quantities. A key aspect of the presented approach is the identification of relevant kinematic measures that describe the deformation of the continuum body and link it to the micro-scale deformation. The methodology, therefore, has the ability to reveal the connections between the micro-scale mechanisms that store elastic energy and lead to particular emergent behavior at the macro-scale
Analysis of parameter-independent PLLs with bang-bang phase-detectors
The parameter-independent design of Phase-Locked Loops (PLLs) is investigated for the case that a bang-bang phase-detector is used. Two self-biased CMOS PLL structures are proposed and compared, one l eading to a completely parameter- and frequency independent behavior. If the PLL frequency operation is constant and known in advance, however, both structures can be made independent of the transisto r Vt and b parameters
Double grain boundary configurations on graphite surfaces
We investigated the atomic structure of different kinds of grain boundaries on highly oriented pyrolytic graphite (HOPG) by scanning tunneling microscopy. We categorized several grain boundary configurations as a function of the misorientation angle between the adjacent grains, highlighting the occurrence of double grain boundaries (i.e., systems of two grain boundaries separated by a nanometric-scale inner region with specific atomic arrangement) for misorientation angles in the range 22°–32°. By using Molecular Dynamics simulations, we analyzed the structure and energy stability of single and double grain boundaries according to the misorientation angle. The experimental evidence is corroborated by Molecular Dynamics results and total energy calculations, which found a comparable stability between single and double grain boundaries for the same misorientation angle range. Our combination of experimental measurements and theoretical calculation extends the understanding of the structural configuration of large angle grain boundaries beyond the range of misorientation angles reported to date
- …