6 research outputs found

    The Roles of Cancer Stem Cells and Therapy Resistance in Colorectal Carcinoma

    No full text
    Cancer stem cells (CSCs) are the main culprits involved in therapy resistance and disease recurrence in colorectal carcinoma (CRC). Results using cell culture, animal models and tissues from patients with CRC suggest the indispensable roles of colorectal CSCs in therapeutic failure. Conventional therapies target proliferating and mature cancer cells, while CSCs are mostly quiescent and poorly differentiated, thereby they can easily survive chemotherapeutic insults. The aberrant activation of Wnt/β-catenin, Notch, Hedgehog, Hippo/YAP (Yes-associated protein) and phosphatidylinositol 3-kinase/protein kinase B facilitates CSCs with excessive self-renewal and therapy resistance property in CRC. CSCs survive the chemo-radiotherapies by escaping therapy mediated DNA damage via altering the cell cycle checkpoints, increasing DNA damage repair capacity and by an efficient scavenging of reactive oxygen species. Furthermore, dysregulations of miRNAs e.g., miR-21, miR-93, miR-203, miR-215, miR-497 etc., modulate the therapeutic sensitivity of colorectal CSCs by regulating growth and survival signalling. In addition, a reversible quiescent G0 state and the re-entering cell cycle capacity of colorectal CSCs can accelerate tumour regeneration after treatment. Moreover, switching to favourable metabolic signatures during a therapeutic regimen will add more complexity in therapeutic outcomes against CSCs. Therapeutic strategies targeting these underlying mechanisms of CSCs’ therapy resistance could provide a promising outcome, however, deep understanding and concerted research are necessary to design novel therapies targeting CSCs. To conclude, the understanding of these mechanisms of CSC in CRC could lead to the improved management of patients with CRC

    Therapeutic Strategies Against Cancer Stem Cells in Esophageal Carcinomas

    No full text
    Cancer stem cells (CSCs) in esophageal cancer have a key role in tumor initiation, progression and therapy resistance. Novel therapeutic strategies to target CSCs are being tested, however, more in-depth research is necessary. Eradication of CSCs can result in successful therapeutic approaches against esophageal cancer. Recent evidence suggests that targeting signaling pathways, miRNA expression profiles and other properties of CSCs are important strategies for cancer therapy. Wnt/Ī²-catenin, Notch, Hedgehog, Hippo and other pathways play crucial roles in proliferation, differentiation, and self-renewal of stem cells as well as of CSCs. All of these pathways have been implicated in the regulation of esophageal CSCs and are potential therapeutic targets. Interference with these pathways or their components using small molecules could have therapeutic benefits. Similarly, miRNAs are able to regulate gene expression in esophageal CSCs, so targeting self-renewal pathways with miRNA could be utilized to as a potential therapeutic option. Moreover, hypoxia plays critical roles in esophageal cancer metabolism, stem cell proliferation, maintaining aggressiveness and in regulating the metastatic potential of cancer cells, therefore, targeting hypoxia factors could also provide effective therapeutic modalities against esophageal CSCs. To conclude, additional study of CSCs in esophageal carcinoma could open promising therapeutic options in esophageal carcinomas by targeting hyper-activated signaling pathways, manipulating miRNA expression and hypoxia mechanisms in esophageal CSCs.</p

    Novel therapeutics against breast cancer stem cells by targeting surface markers and signaling pathways

    No full text
    Background: Breast cancer remains to be one of the deadliest forms of cancers, owing to the drug resistance and tumor relapse caused by breast cancer stem cells (BCSCs) despite notable advancements in radio-chemotherapies. Objectives: To find out novel therapeutics against breast cancer stem cells by aiming surface markers and signaling pathways. Methods: A systematic literature search was conducted through various electronic databases including, Pubmed, Scopus, Google scholar using the keywords "BCSCs, surface markers, signaling pathways and therapeutic options against breast cancer stem cell. Articles selected for the purpose of this review were reviewed and extensively analyzed. Results: Novel therapeutic strategies include targeting BCSCs surface markers and aberrantly activated signaling pathways or targeting their components, which play critical roles in self-renewal and defense, have been shown to be significantly effective against breast cancer. In this review, we represent a number of ways against BCSCs surface markers and hyper-activated signaling pathways to target this highly malicious entity of breast cancer more effectively in order to make a feasible and useful strategy for successful breast cancer treatment. In addition, we discuss some characteristics of BCSCs in disease progression and therapy resistance. Conclusion: BCSCs involved in cancer pathogenesis, therapy resistance and cancer recurrence. Thus, it is suggested that a multi-dimensional therapeutic approach by targeting surface markers and aberrantly activated signaling pathways of BCSCs alone or in combination with each other could really be worthwhile in the treatment of breast cancer

    Roles of long noncoding RNA in tripleā€negative breast cancer

    No full text
    Abstract Introduction Long noncoding RNAs (lncRNAs) play crucial roles in regulating various hallmarks in cancers. Tripleā€negative (Estrogen receptor, ER; Human epidermal growth factor receptor 2, HER2; Progesterone receptor, PR) breast cancer (TNBC) is the most aggressive form of breast cancers with a poor prognosis and no available molecular targeted therapy. Methods We reviewed the current literature on the roles of lncRNAs in the pathogenesis, therapy resistance, and prognosis of patients with TBNC. Results LncRNAs are associated with TNBC pathogenesis, therapy resistance, and prognosis. For example, lncRNAs such as small nucleolar RNA host gene 12 (SNHG12), highly upregulated in liver cancer (HULC) HOX transcript antisense intergenic RNA (HOTAIR), lincRNAā€regulator of reprogramming (LincRNAā€ROR), etc., are aberrantly expressed in TNBC and are involved in the pathogenesis of the disease. LncRNAs act as a decoy, scaffold, or sponge to regulate the expression of genes, miRNAs, and transcription factors associated with pathogenesis and progression of TNBC. Moreover, lncRNAs such as ferritin heavy chain 1 pseudogene 3 (FTH1P3), BMP/OPā€responsive gene (BORG) contributes to the therapy resistance property of TNBC through activating ABCB1 (ATPā€binding cassette subfamily B member 1) drug efflux pumps by increasing DNA repair capacity or by inducing signaling pathway involved in therapeutic resistance. Conclusion In this review, we outline the functions of various lncRNAs along with their molecular mechanisms involved in the pathogenesis, therapeutic resistance of TBNC. Also, the prognostic implications of lncRNAs in patients with TNBC is illustrated. Moreover, potential strategies targeting lncRNAs against highly aggressive TNBC is discussed in this review

    Plasticity of cancer stem cell: origin and role in disease progression and therapy resistance

    No full text
    In embryonic development and throughout life, there are some cells can exhibit phenotypic plasticity. Phenotypic plasticity is the ability of cells to differentiate into multiple lineages. In normal development, plasticity is highly regulated whereas cancer cells re-activate this dynamic ability for their own progression. The re-activation of these mechanisms enables cancer cells to acquire a cancer stem cell (CSC) phenotype- a subpopulation of cells with increased ability to survive in a hostile environment and resist therapeutic insults. There are several contributors fuel CSC plasticity in different stages of disease progression such as a complex network of tumour stroma, epidermal microenvironment and different sub-compartments within tumour. These factors play a key role in the transformation of tumour cells from a stable condition to a progressive state. In addition, flexibility in the metabolic state of CSCs helps in disease progression. Moreover, epigenetic changes such as chromatin, DNA methylation could stimulate the phenotypic change of CSCs. Development of resistance to therapy due to highly plastic behaviour of CSCs is a major cause of treatment failure in cancers. However, recent studies explored that plasticity can also expose the weaknesses in CSCs, thereby could be utilized for future therapeutic development. Therefore, in this review, we discuss how cancer cells acquire the plasticity, especially the role of the normal developmental process, tumour microenvironment, and epigenetic changes in the development of plasticity. We further highlight the therapeutic resistance property of CSCs attributed by plasticity. Also, outline some potential therapeutic options against plasticity of CSCs. [Figure not available: see fulltext.]

    MicroRNAs, a promising target for breast cancer stem cells

    No full text
    Reactivation of the stem cell programme in breast cancer is significantly associated with persistent cancer progression and therapeutic failure. Breast cancer stem cells (BCSCs) are involved in the process of breast cancer initiation, metastasis and cancer relapse. Among the various important cues found in the formation and progression of BCSCs, microRNAs (miRNAs or miRs) play a pivotal role by regulating the expression of various tumour suppressor genes or oncogenes. Accordingly, there is evidence that miRNAs are associated with BCSC self-renewal, differentiation, invasion, metastasis and therapy resistance, and therefore cancer recurrence. miRNAs execute their roles by regulating the expression of stemness markers, activation of signalling pathways or their components and regulation of transcription networks in BCSCs. Therefore, a better understanding of the association between BCSCs and miRNAs has the potential to help design more effective and safer therapeutic solutions against breast cancer. Thus, an miRNA-based therapeutic strategy may open up new horizons for the treatment of breast cancer in the future. In view of this, we present the progress to date of miRNA research associated with stemness marker expression, signalling pathways and activation of transcription networks to regulate the self-renewal, differentiation and therapy resistance properties of BCSCs
    corecore