128 research outputs found
Estimation of the Radon Risk Under Different European Climates and Soil Textures
Radon is a radioactive gas produced from the natural radioactive decay of uranium and is found in almost all rocks and soils. In confined places (e.g., dwellings, workplaces, caves, and underground mines), radon may accumulate and become a substantial health risk since it is considered the second most important cause of lung cancer in many developed countries. Radon risk assessment commonly considers either field or estimate values of the radon concentration and the gas permeability of soils. However, radon risk assessment from single measurement surveys to radon potential largescale mapping is strongly sensitive to the soil texture variability and climate changes, and particularly, to the soil water content dynamic and its effect on soil gas permeability. In this paper, the gas permeability of soils, and thus, the estimation of radon risk, is studied considering the effect of three different climates following the Köppen classification and four soil textures on soil water content dynamics. This investigation considers the CLIGEN weather simulator to elaborate 100-year length climatic series; Rosseta 3 pedotransfer function to calculate soil hydraulics parameters, and the HYDRUS-1D software to model the dynamics of water content in the soil. Results reveal that climate strongly affects gas permeability of soils and they must be considered as an additional factor during the evaluation of radon exposure risk. The impact of climate and texture defines the soil water content dynamic. Coarse soils show smaller gas permeability variations and then radon risk, in this case, is less affected by the climate type. However, in clay soils, the effect of climate and the differences in soil water content derive in gas permeability variations between 100 and 1,000 times through an annual cycle. As a result, it may cross the boundary between two radon risk categories. Results deeply confirm that both climate and texture should be compulsory considered when calculating the radon exposure risk and in the definition of new strategies for the elaboration of more reliable geogenic radon potential largescale maps.This work was supported by the Spanish Ministry of Science, Innovation, and Universities [grant number RTI2018-099052-BI00] and Regional Governments of Comunidad Valenciana (Spain) [grant number AICO/2020/175]. A pre-doctoral research fellowship (PRE2019-088294) was awarded to SG-O for the project RTI2018-099052-BI00
Influence of substituents of Perylenebisimides on the surface energy and wettability: A systematic structure–property relationship analysis
This paper seeks to elucidate the influence on the surface wettability of a variety of substituents located in different positions of the perylene bisimide (PBI) core (ortho versus imide) with distinct electron-donor or -withdrawing character and diverse steric demand, using for this more than 20 planar PBIs. The correlation between the polarity of the individual functional group on the PBI and the surface wettability has been addressed by means of substituent descriptors in terms of Hansch-Fujita π parameter, Hammett σmeta and σpara constants, and steric parameters (Taft-Dubois Es’ and Charton υ). With these parameters, a quantitative structure–property relationship (QSPR) analysis has been performed using multivariable linear regression (MLR) fittings. The relationship of Surface Energy, determined by the static contact angle method with three different solvents, to structural properties of PBIs is described. As well, the polar and dispersive contributions have been determined. For planar PBIs, a predominant influence of the substituents in the imide position on the surface wettability has been found despite of the electronic nature and steric hindrance of the substituents simultaneously located in ortho positions. This effect is more pronounced with the longer alkyl substituents at the imide position. This study paves the way for a rational chromophore design considering the on surface behavior, which will ultimately condition the contact and thus their performance in optoelectronic devices
Making sense of metabolomic data: comprehensive analysis of altered metabolic pathways in diabetes and obesity
Podeu consultar el III Workshop anual INSA-UB complet a: http://hdl.handle.net/2445/118993Sessió 1. Pòster núm.
Mucosomes: Intrinsically Mucoadhesive Glycosylated Mucin Nanoparticles as Multi-Drug Delivery Platform
Mucus is a complex barrier for pharmacological treatments and overcoming it is one of the major challenges faced during transmucosal drug delivery. To tackle this issue, a novel class of glycosylated nanoparticles, named "mucosomes," which are based on the most important protein constituting mucus, the mucin, is introduced. Mucosomes are designed to improve drug absorption and residence time on the mucosal tissues. Mucosomes are produced (150-300 nm), functionalized with glycans, and loaded with the desired drug in a single one-pot synthetic process and, with this method, a wide range of small and macro molecules can be loaded with different physicochemical properties. Various in vitro models are used to test the mucoadhesive properties of mucosomes. The presence of functional glycans is indicated by the interaction with lectins. Mucosomes are proven to be storable at 4 degrees C after lyophilization, and administration through a nasal spray does not modify the morphology of the mucosomes. In vitro and in vivo tests indicate mucosomes do not induce adverse effects under the investigated conditions. This study proposes mucosomes as a ground-breaking nanosystem that can be applied in several pathological contexts, especially in mucus-related disorders
Risk of endometrial cancer after RRSO in BRCA 1/2 carriers: a multicentre cohort study
Endometrial cancer; Hysterectomy; Serous carcinomaCàncer d'endometri; Histerectomia; Carcinoma serósCáncer endometrial; Histerectomía; Carcinoma serosoObjective
To know the risk of endometrial cancer (EC) in a population of women with BRCA 1/2 pathogenic or likely pathogenic variants after risk-reducing salpingo-oophorectomy (RRSO).
Methods
The study cohort included data from 857 women with BRCA mutations who underwent RRSO visited four hospitals in Catalonia, Spain, from January 1, 1999 to April 30, 2019. Standardized incidence ratio (SIR) of EC was calculated in these patients using data from a regional population-based cancer registry.
Results
After RRSO, eight cases of EC were identified. Four in BRCA 1 carriers and four in BRCA2 carriers. The expected number of cases of EC was 3.67 cases, with a SIR of 2.18 and a 95% CI (0.93–3.95).
Conclusions
In our cohort, the risk of EC in BRCA1/2 carriers after RRSO is not greater than expected. Hysterectomy is not routinely recommended for these patients.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors
Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data
Background: Bioinformatic tools for the enrichment of 'omics' datasets facilitate interpretation and understanding of data. To date few are suitable for metabolomics datasets. The main objective of this work is to give a critical overview, for the first time, of the performance of these tools. To that aim, datasets from metabolomic repositories were selected and enriched data were created. Both types of data were analysed with these tools and outputs were thoroughly examined. Results: An exploratory multivariate analysis of the most used tools for the enrichment of metabolite sets, based on a non-metric multidimensional scaling (NMDS) of Jaccard's distances, was performed and mirrored their diversity. Codes (identifiers) of the metabolites of the datasets were searched in different metabolite databases (HMDB, KEGG, PubChem, ChEBI, BioCyc/HumanCyc, LipidMAPS, ChemSpider, METLIN and Recon2). The databases that presented more identifiers of the metabolites of the dataset were PubChem, followed by METLIN and ChEBI. However, these databases had duplicated entries and might present false positives. The performance of over-representation analysis (ORA) tools, including BioCyc/HumanCyc, ConsensusPathDB, IMPaLA, MBRole, MetaboAnalyst, Metabox, MetExplore, MPEA, PathVisio and Reactome and the mapping tool KEGGREST, was examined. Results were mostly consistent among tools and between real and enriched data despite the variability of the tools. Nevertheless, a few controversial results such as differences in the total number of metabolites were also found. Disease-based enrichment analyses were also assessed, but they were not found to be accurate probably due to the fact that metabolite disease sets are not up-to-date and the difficulty of predicting diseases from a list of metabolites. Conclusions: We have extensively reviewed the state-of-the-art of the available range of tools for metabolomic datasets, the completeness of metabolite databases, the performance of ORA methods and disease-based analyses. Despite the variability of the tools, they provided consistent results independent of their analytic approach. However, more work on the completeness of metabolite and pathway databases is required, which strongly affects the accuracy of enrichment analyses. Improvements will be translated into more accurate and global insights of the metabolome
1,7-Bay-Substituted Perylenediimide Derivative with Outstanding Laser Performance
Efficient ASE at wavelengths >620 nm from PS films doped with a bay-substituted perylenediimide (PDI) derivative is reported. The maximum PDI content is around 40 times larger than in prior studies. The ability to introduce large dye amounts into the film without photoluminescence (PL) quenching allows very high PL and ASE efficiencies with low thresholds. A distributed feedback (DFB) laser device using one of the best-performing films is fabricated and characterized.We thank support from the Spanish Government (MINECO), the European Community (FEDER) and the Generalitat Valenciana through MAT-2011–28167-C02, CTQ2011–26455, PROMETEO 2012/010 and ISIC/2012/008, as well as to the University of Alicante and the University Miguel Hernández de Elche
Oligonucleotide-capped nanoporous anodic alumina biosensor as diagnostic tool for rapid and accurate detection of Candida auris in clinical samples
[EN] Candida auris has arisen as an important multidrug-resistant fungus because of several nosocomial outbreaks and elevated rates of mortality. Accurate and rapid diagnosis of C. auris is highly desired; nevertheless, current methods often present severe limitations and produce misidentification. Herein a sensitive, selective, and time-competitive biosensor based on oligonucleotide-gated nanomaterials for effective detection of C. auris is presented. In the proposed design, a nanoporous anodic alumina scaffold is filled with the fluorescent indicator rhodamine B and the pores blocked with different oligonucleotides capable of specifically recognize C. auris genomic DNA. Gate opening modulation and cargo delivery is controlled by successful DNA recognition. C. auris is detected at a concentration as low as 6 CFU/mL allowing obtaining a diagnostic result in clinical samples in one hour with no prior DNA extraction or amplification steps.The authors want to thank the Spanish Government (project RTI2018-100910-B-C41 (MCIU/AEI/FEDER, UE)), the Generalitat Valenciana (project PROMETEO/2018/024), Universitat Politecnica de Valencia-Instituto de Investigacion Sanitaria La Fe (AURISGATE project) and Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (NANOPATH AND CANDI-EYE projects) for support. L.P thanks MINECO for his predoctoral fellowship. S.S. thanks the Instituto de Salud Carlos III and the European Social Fund for the financial support "Sara Borrell" (CD16/000237).Pla, L.; Santiago-Felipe, S.; Tormo-Mas, MÁ.; Ruiz-Gaitán, A.; Peman, J.; Valentín, E.; Sancenón Galarza, F.... (2021). Oligonucleotide-capped nanoporous anodic alumina biosensor as diagnostic tool for rapid and accurate detection of Candida auris in clinical samples. Emerging microbes & infections. 10(1):407-415. https://doi.org/10.1080/22221751.2020.187041140741510
- …