4 research outputs found
Kis panda tartása, takarmányozása, egészségügye és kórbonctana magyar és európai állatkertekben
Dolgozatomban a kis panda (Ailurus fulgens) tartásával, takarmányozásával,
betegségeivel és kórbonctanával foglalkoztam. Először – a későbbi tartási és takarmányozási
fejezetek megalapozottabb kifejtése érdekében – részletesen bemutattam a kis panda élettani
és rendszertani jellemzőit, majd részletesen elemeztem a kis panda állatkerti tartásával
kapcsolatos irodalmat, értelmezve és rendszerezve az erről szóló információkat. Önálló
vizsgálatomat egy általam összeállított kérdőív segítségével kezdtem el, összegezve a magyar
és az európai állatkertek vörös panda tartásával és takarmányozásával kapcsolatos
protokolljait, valamint betegségeik és az elhullásuk alakulását
Geographically structured genomic diversity of non-human primate-infecting Treponema pallidum subsp. pertenue
Many non-human primate species in sub-Saharan Africa are infected with Treponema pallidum subsp. pertenue, the bacterium causing yaws in humans. In humans, yaws is often characterized by lesions of the extremities and face, while T. pallidum subsp. pallidum causes venereal syphilis and is typically characterized by primary lesions on the genital, anal or oral mucosae. It remains unclear whether other T. pallidum subspecies found in humans also occur in non-human primates and how the genomic diversity of non-human primate T. pallidum subsp. pertenue lineages is distributed across hosts and space. We observed orofacial and genital lesions in sooty mangabeys (Cercocebus atys) in Taï National Park, Côte d'Ivoire and collected swabs and biopsies from symptomatic animals. We also collected non-human primate bones from 8 species in Taï National Park and 16 species from 11 other sites across sub-Saharan Africa. Samples were screened for T. pallidum DNA using polymerase chain reactions (PCRs) and we used in-solution hybridization capture to sequence T. pallidum genomes. We generated three nearly complete T. pallidum genomes from biopsies and swabs and detected treponemal DNA in bones of six non-human primate species in five countries, allowing us to reconstruct three partial genomes. Phylogenomic analyses revealed that both orofacial and genital lesions in sooty mangabeys from Taï National Park were caused by T. pallidum subsp. pertenue. We showed that T. pallidum subsp. pertenue has infected non-human primates in Taï National Park for at least 28 years and has been present in two non-human primate species that had not been described as T. pallidum subsp. pertenue hosts in this ecosystem, western chimpanzees (Pan troglodytes verus) and western red colobus (Piliocolobus badius), complementing clinical evidence that started accumulating in Taï National Park in 2014. More broadly, simian T. pallidum subsp. pertenue strains did not form monophyletic clades based on host species or the symptoms caused, but rather clustered based on geography. Geographical clustering of T. pallidum subsp. pertenue genomes might be compatible with cross-species transmission of T. pallidum subsp. pertenue within ecosystems or environmental exposure, leading to the acquisition of closely related strains. Finally, we found no evidence for mutations that confer antimicrobial resistance
Fly iDNA suggests strict reliance of the causative agent of sylvatic anthrax on rainforest ecosystems
Abstract Metabarcoding of invertebrate‐derived DNA (iDNA) is increasingly used to describe vertebrate diversity in terrestrial ecosystems. Fly iDNA has also shown potential as a tool for detecting pathogens. Combining these approaches makes fly iDNA a promising tool for understanding the ecology and distribution of novel pathogens or emerging infectious diseases. Here, we use fly iDNA to explore the geographic distribution of Bacillus cereus biovar anthracis (Bcbva) along a gradient from the forest within Taï National Park, Côte d'Ivoire, out to surrounding villages. We tested fly pools (N = 100 pools of 5 flies) collected in the forest (N = 25 pools), along the forest edge (N = 50 pools), and near surrounding villages (N = 25 pools) for Bcbva. Using the same iDNA, we sought to reconstruct fly and mammal communities with metabarcoding, with the aim of investigating potential links with Bcbva detection. We detected Bcbva in 5/100 fly pools and positivity varied significantly across the habitat types (forest = 4/25, edge = 1/50, village = 0/25). It was possible to culture Bcbva from all positive fly pools, confirming their positivity, while sequencing of their whole genomes revealed a considerable portion of known genomic diversity for this pathogen. iDNA generated data about the mammal and fly communities in these habitats, revealing the highest mammal diversity in the forest and considerable changes in fly community composition along the gradient. Bcbva host range estimates from fly iDNA were largely identical to the results of long‐term carcass monitoring efforts in the region. We show that fly iDNA can generate data on the geographic distribution and host range of a pathogen at kilometer scales, as well as reveal the pathogen's phylogenetic diversity. Our results highlight the power of fly iDNA for mammal biomonitoring and pathogen surveillance
Sourcing high tissue quality brains from deceased wild primates with known socio‐ecology
The selection pressures that drove dramatic encephalisation processes through the mammal lineage remain elusive, as does knowledge of brain structure reorganisation through this process. In particular, considerable structural brain changes are present across the primate lineage, culminating in the complex human brain that allows for unique behaviours such as language and sophisticated tool use. To understand this evolution, a diverse sample set of humans' closest relatives with varying socio-ecologies is needed. However, current brain banks predominantly curate brains from primates that died in zoological gardens. We try to address this gap by establishing a field pipeline mitigating the challenges associated with brain extractions of wild primates in their natural habitat. The success of our approach is demonstrated by our ability to acquire a novel brain sample of deceased primates with highly variable socio-ecological exposure and a particular focus on wild chimpanzees. Methods in acquiring brain tissue from wild settings are comprehensively explained, highlighting the feasibility of conducting brain extraction procedures under strict biosafety measures by trained veterinarians in field sites. Brains are assessed at a fine-structural level via high-resolution MRI and state-of-the-art histology. Analyses confirm that excellent tissue quality of primate brains sourced in the field can be achieved with a comparable tissue quality of brains acquired from zoo-living primates. Our field methods are noninvasive, here defined as not harming living animals, and may be applied to other mammal systems than primates. In sum, the field protocol and methodological pipeline validated here pose a major advance for assessing the influence of socio-ecology on medium to large mammal brains, at both macro- and microstructural levels as well as aiding with the functional annotation of brain regions and neuronal pathways via specific behaviour assessments