1,891 research outputs found
Solar silicon from directional solidification of MG silicon produced via the silicon carbide route
A process of metallurgical grade (MG) silicon production is presented which appears particularly suitable for photovoltaic (PV) applications. The MG silicon is prepared in a 240 KVA, three electrode submerged arc furnace, starting from high grade quartz and high purity silicon carbide. The silicon smelted from the arc furnace was shown to be sufficiently pure to be directionally solidified to 10 to 15 kg. After grinding and acid leaching, had a material yield larger than 90%. With a MG silicon feedstock containing 3 ppmw B, 290 ppmw Fe, 190 ppmw Ti, and 170 ppmw Al, blended with 50% of off grade electronic grade (EG) silicon to reconduct the boron content to a concentration acceptable for solar cell fabrication, the 99% of deep level impurities were concentrated in the last 5% of the ingot. Quite remarkably this material has OCV values higher tham 540 mV and no appreciable shorts due to SiC particles
High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy
Current-induced domain wall (DW) displacements in an array of ultrathin
Pt/Co/AlOx wires with perpendicular magnetic anisotropy have been directly
observed by wide field Kerr microscopy. DWs in all wires in the array were
driven simultaneously and their displacement on the micrometer-scale was
controlled by the current pulse amplitude and duration. At the lower current
densities where DW displacements were observed (j less than or equal to 1.5 x
10^12 A/m^2), the DW motion obeys a creep law. At higher current density (j =
1.8 x 10^12 A/m^2), zero-field average DW velocities up to 130 +/- 10 m/s were
recorded.Comment: Minor changes to Fig. 1(b) and text, correcting for the fact that
domain walls were subsequently found to move counter to the electron flow.
References update
Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks
We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a
tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic
nanotracks when DW dynamics is driven by an easy axis magnetic field or a spin
polarized current. The DW tilting affects the DW dynamics for large DMI and the
tilting relaxation time can be very large as it scales with the square of the
track width. The results are well explained by an analytical model based on a
Lagrangian approach where the DMI and the DW tilting are included. We propose a
simple way to estimate the DMI in a magnetic multilayers by measuring the
dependence of the DW tilt angle on a transverse static magnetic field. Our
results shed light on the current induced DW tilting observed recently in Co/Ni
multilayers with inversion asymmetry, and further support the presence of DMI
in these systems.Comment: 12 pages, 3 figures, 1 Supplementary Material
- …