2 research outputs found

    Variability of physiological brain perfusion in healthy subjects – A systematic review of modifiers. Considerations for multi-center ASL studies

    Get PDF
    Quantitative measurements of brain perfusion are influenced by perfusion-modifiers. Standardization of measurement conditions and correction for important modifiers is essential to improve accuracy and to facilitate the interpretation of perfusion-derived parameters. An extensive literature search was carried out for factors influencing quantitative measurements of perfusion in the human brain unrelated to medication use. A total of 58 perfusion modifiers were categorized into four groups. Several factors (e.g., caffeine, aging, and blood gases) were found to induce a considerable effect on brain perfusion that was consistent across different studies; for other factors, the modifying effect was found to be debatable, due to contradictory results or lack of evidence. Using the results of this review, we propose a standard operating procedure, based on practices already implemented in several research centers. Also, a theory of ‘deep MRI physiotyping’ is inferred from the combined knowledge of factors influencing brain perfusion as a strategy to reduce variance by taking both personal information and the presence or absence of perfusion modifiers into account. We hypothesize that this will allow to personalize the concept of normality, as well as to reach more rigorous and earlier diagnoses of brain disorders

    Comparison of arterial spin labeling registration strategies in the multi-center GENetic frontotemporal dementia initiative (GENFI)

    No full text
    Purpose: To compare registration strategies to align arterial spin labeling (ASL) with 3D T1-weighted (T1w) images, with the goal of reducing the between-subject variability of cerebral blood flow (CBF) images. Materials and Methods: Multi-center 3T ASL data were collected at eight sites with four different sequences in the multi-center GENetic Frontotemporal dementia Initiative (GENFI) study. In a total of 48 healthy controls, we compared the following image registration options: (I) which images to use for registration (perfusion-weighted images [PWI] to the segmented gray matter (GM) probability map (pGM) (CBF-pGM) or M0 to T1w (M0-T1w); (II) which transformation to use (rigid-body or non-rigid); and (III) whether to mask or not (no masking, M0-based FMRIB software library Brain Extraction Tool [BET] masking). In addition to visual comparison, we quantified image similarity using the Pearson correlation coefficient (CC), and used the Mann-Whitney U rank sum test. Results: CBF-pGM outperformed M0-T1w (CC improvement 47.2% ± 22.0%; P < 0.001), and the non-rigid transformation outperformed rigid-body (20.6% ± 5.3%; P < 0.001). Masking only improved the M0-T1w rigid-body registration (14.5% ± 15.5%; P = 0.007). Conclusion: The choice of image registration strategy impacts ASL group analyses. The non-rigid transformation is promising but requires validation. CBF-pGM rigid-body registration without masking can be used as a default strategy. In patients with expansive perfusion deficits, M0-T1w may outperform CBF-pGM in sequences with high effective spatial resolution. BET-masking only improves M0-T1w registration when the M0 image has sufficient contrast
    corecore