73 research outputs found

    Glassforming Liquids, Amorphous and Semicrystalline Polymers: Exploring their Energy Landscape and Dynamical Heterogeneity by Multi-frequency High-Field EPR

    Get PDF
    We review past and recent work carried out on viscous liquids, amorphous and semicrystalline polymers by multifrequency high-field electron paramagnetic resonance (HF-EPR) facility in Pisa. The emphasis is on the enhanced ability to provide fine details of the reorientation process of the paramagnetic guest, the spin probe, revealing features driving the dynamics of the host system, including the energy-barrier distribution of glassy polymers, the dynamical heterogeneity of semicrystalline polymers, and the dynamical changes occurring at the critical temperature predicted by the ideal mode-coupling theory

    Unravelling main- and side-chain motions in polymers with NMR spectroscopy and relaxometry: The case of polyvinyl butyral

    Get PDF
    Polyvinyl butyral (PVB) is an amorphous polymer employed in many technological applications. In order to highlight the relationships between macroscopic properties and dynamics at a microscopic level, motions of the main-chain and of the propyl side-chains were investigated between Tg − 288◦ C and Tg + 55◦ C, with Tg indicating the glass transition temperature. To this aim, a combination of solid state Nuclear Magnetic Resonance (NMR) methods was applied to two purposely synthesized PVB isotopomers: one fully protonated and the other perdeuterated on the side-chains.1 H time domain NMR and1 H field cycling NMR relaxometry experiments, performed across and above Tg, revealed that the dynamics of the main-chain corresponds to the α-relaxation associated to the glass transition, which was previously characterized by dielectric spectroscopy. A faster secondary relaxation was observed for the first time and ascribed to side-chains. The geometry and rate of motions of the different groups in the side-chains were characterized below Tg by2 H NMR spectroscopy

    Prolonged epileptic discharges predict seizure recurrence in JME: Insights from prolonged ambulatory EEG

    Get PDF
    Objective: Markers of seizure recurrence are needed to personalize antiseizure medication (ASM) therapy. In the clinical practice, EEG features are considered to be related to the risk of seizure recurrence for genetic generalized epilepsies (GGE). However, to our knowledge, there are no studies analyzing systematically specific EEG features as indices of ASM efficacy in GGE. In this study, we aimed at identifying EEG indicators of ASM responsiveness in Juvenile Myoclonic Epilepsy (JME), which, among GGE, is characterized by specific electroclinical features. Methods: We compared the features of prolonged ambulatory EEG (paEEG, 22 h of recording) of JME patients experiencing seizure recurrence within a year (“cases”) after EEG recording, with those of patients with sustained seizure freedom for at least 1 year after EEG (“controls”). We included only EEG recordings of patients who had maintained the same ASM regimen (dosage and type) throughout the whole time period from the EEG recording up to the outcome events (which was seizure recurrence for the “cases”, or 1-year seizure freedom for “controls”). As predictors, we evaluated the total number, frequency, mean and maximum duration of epileptiform discharges (EDs) and spike density (i.e. total EDs duration/artifact-free EEG duration) recorded during the paEEG. The same indexes were assessed also in standard EEG (stEEG), including activation methods. Results: Both the maximum length and the mean duration of EDs recorded during paEEG significantly differed between cases and controls; when combined in a binary logistic regression model, the maximum length of EDs emerged as the only valid predictor. A cut-off of EDs duration of 2.68 seconds discriminated between cases and controls with a 100% specificity and a 93% sensitivity. The same indexes collected during stEEG lacked both specificity and sensitivity. Significance: The occurrence of prolonged EDs in EEG recording might represent an indicator of antiepileptic drug failure in JME patients

    Sustained seizure freedom with adjunctive brivaracetam in patients with focal onset seizures

    Get PDF
    The maintenance of seizure control over time is a clinical priority in patients with epilepsy. The aim of this study was to assess the sustained seizure frequency reduction with adjunctive brivaracetam (BRV) in real-world practice. Patients with focal epilepsy prescribed add-on BRV were identified. Study outcomes included sustained seizure freedom and sustained seizure response, defined as a 100% and a ≥50% reduction in baseline seizure frequency that continued without interruption and without BRV withdrawal through the 12-month follow-up. Nine hundred ninety-four patients with a median age of 45 (interquartile range = 32–56) years were included. During the 1-year study period, sustained seizure freedom was achieved by 142 (14.3%) patients, of whom 72 (50.7%) were seizure-free from Day 1 of BRV treatment. Sustained seizure freedom was maintained for ≥6, ≥9, and 12 months by 14.3%, 11.9%, and 7.2% of patients from the study cohort. Sustained seizure response was reached by 383 (38.5%) patients; 236 of 383 (61.6%) achieved sustained ≥50% reduction in seizure frequency by Day 1, 94 of 383 (24.5%) by Month 4, and 53 of 383 (13.8%) by Month 7 up to Month 12. Adjunctive BRV was associated with sustained seizure frequency reduction from the first day of treatment in a subset of patients with uncontrolled focal epilepsy

    Phenyl ring dynamics in a liquid crystal polymer through H-2 NMR spectroscopy

    No full text
    The dynamics of a side chain liquid crystal copolymer at two dierent compositions has been investigated in its smectic A and C phases. J1x0 and J22x0 spectral densities have been determined for aromatic deuterium nuclei in the side chains and their interpretation has been carried out by means of several available motional models. The dy- namic process mainly contributing to relaxation has been found to be the rotation of the phenyl ring about its para-axis, that is best described by a small step rotational diusion model, where the diusion constant has an Arrhenius tem- perature dependence and a Gaussian distribution of the activation energies is present, indicating a remarkable degree of dynamic heterogeneity of this system
    corecore