32 research outputs found

    New views of humpback whale flow dynamics and oral morphology during prey engulfment

    Get PDF
    The rise of inexpensive, user-friendly cameras and editing software promises to revolutionize data collection with minimal disturbance to marine mammals. Video sequences recorded by aerial drones and GoPro cameras provided close-up views and unique perspectives of humpback whales engulfing juvenile salmon at or just below the water surface in Southeast Alaska and Prince William Sound. Although humpback feeding is famous for its flexibility, several stereotyped events were noted in the 47 lunges we analyzed. Engulfment was extremely rapid (mean 2.07 s), and the entrance through which the tongue inverts into the ventral pouch was seen as water rushes in. Cranial elevation was a major contributor to gape, and pouch contraction sometimes began before full gape closure, with reverberating waves indicating rebounding flow of water within the expanded pouch. Expulsion of filtered water began with a small splash at the anterior of the mouth, followed by sustained excurrent flow in the mouth’s central or posterior regions. Apart from a splash of rebounding water, water within the mouth was surprisingly turbulence-free during engulfment, but submersion of the whale’s head created visible surface whirlpools and vortices which may aggregate prey for subsequent engulfment.We thank the Northern Southeast Regional Aquaculture Association for assistance and access to their facilities. Geoff Clark and the Prince William Sound Aquaculture Corporation provided drone and GoPro footage of their facilities captured by Klint Hischke and Dan Orlando. We are grateful for field support provided by the Alaska Whale Foundation and to Mark Kelley Photography which generously donated a percentage from book sales to support this study. We thank scientists who have aided our understanding of rorqual engulfment, especially Rick Lambertsen, Jeremy Goldbogen, Bob Shadwick, Jean Potvin, Nick Pyenson, Brian Kot, Haruka Ito, and Frank Fish. Research in Southeast Alaska was authorized under NOAA Fisheries permits 14122 & 18529. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Numbers UL1GM118991, TL4GM118992, or RL5GM118990. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.Ye

    A population of proinflammatory T cells coexpresses αβ and γδ T cell receptors in mice and humans

    Get PDF
    T cells are classically recognized as distinct subsets that express αβ or γδ TCRs. We identify a novel population of T cells that coexpress αβ and γδ TCRs in mice and humans. These hybrid αβ-γδ T cells arose in the murine fetal thymus by day 16 of ontogeny, underwent αβ TCR–mediated positive selection into CD4+ or CD8+ thymocytes, and constituted up to 10% of TCRδ+ cells in lymphoid organs. They expressed high levels of IL-1R1 and IL-23R and secreted IFN-γ, IL-17, and GM-CSF in response to canonically restricted peptide antigens or stimulation with IL-1β and IL-23. Hybrid αβ-γδ T cells were transcriptomically distinct from conventional γδ T cells and displayed a hyperinflammatory phenotype enriched for chemokine receptors and homing molecules that facilitate migration to sites of inflammation. These proinflammatory T cells promoted bacterial clearance after infection with Staphylococcus aureus and, by licensing encephalitogenic Th17 cells, played a key role in the development of autoimmune disease in the central nervous system

    Lunge Feeding in Rorqual Whales

    No full text

    Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus)

    No full text
    Balaenid whales perform long breath-hold foraging dives despite a high drag from their ram filtration of zooplankton. To maximize the volume of prey acquired in a dive with limited oxygen supplies, balaenids must either filter feed only occasionally when prey density is particularly high, or they must swim at slow speeds while filtering to reduce drag and oxygen consumption. Using digital tags with three-axis accelerometers, we studied bowhead whales feeding off West Greenland and present here, to our knowledge, the first detailed data on the kinematics and swimming behaviour of a balaenid whale filter feeding at depth. Bowhead whales employ a continuous fluking gait throughout the bottom phase of foraging dives, moving at very slow speeds (less than 1 m s−1), allowing them to filter feed continuously at depth. Despite the slow speeds, the large mouth aperture provides a water filtration rate of approximately 3 m3 s−1, amounting to some 2000 tonnes of water and prey filtered per dive. We conclude that a food niche of dense, slow-moving zooplankton prey has led balaenids to evolve locomotor and filtering systems adapted to work against a high drag at swimming speeds of less than 0.07 body length s−1 using a continuous fluking gait very different from that of nekton-feeding, aquatic predators

    Baseline TREM-1 Whole Blood Gene Expression Does Not Predict Response to Adalimumab Treatment in Patients with Ulcerative Colitis or Crohn's Disease in the SERENE Studies

    No full text
    BACKGROUND AND AIMS: This study assessed whether baseline triggering receptor expressed on myeloid cells [TREM-1] whole blood gene expression predicts response to anti-TNF therapy in patients with UC or CD. METHODS: TREM-1 whole blood gene expression was analysed by RNA sequencing [RNA-seq] in patients with moderately to severely active UC or CD treated with adalimumab in the Phase 3 SERENE-UC and SERENE-CD clinical trials. The predictive value of baseline TREM-1 expression was evaluated and compared according to endoscopic and clinical response vs non-response, and remission vs non-remission, at Weeks 8 and 52 [SERENE-UC], and Weeks 12 and 56 [SERENE-CD]. RESULTS: TREM-1 expression was analysed in 95 and 106 patients with UC and CD, respectively, receiving standard-dose adalimumab induction treatment. In SERENE-UC, baseline TREM-1 expression was not predictive of endoscopic response [p=0.48], endoscopic remission [p=0.53], clinical response [p=0.58] or clinical remission [p=0.79] at Week 8, or clinical response [p=0.60] at Week 52. However, an association was observed with endoscopic response [p=0.01], endoscopic remission [p=0.048], and clinical remission [p=0.04997] at Week 52. For SERENE-CD, baseline TREM-1 expression was not predictive of endoscopic response [p=0.56], endoscopic remission [p=0.33], clinical response [p=0.07], clinical remission [p=0.65] at Week 12, or endoscopic response [p=0.61], endoscopic remission [p=0.51], clinical response [p=0.62] or clinical remission [p=0.97] at Week 56. CONCLUSIONS: Baseline TREM-1 gene expression did not uniformly predict adalimumab response in SERENE clinical trials. Further research is needed to identify potential blood-based biomarkers predictive of response to anti-TNF therapy in patients with IBD.Published version, accepted version (12 month embargo), submitted versionThe article is available via Open Access. Click on the 'Additional link' above to access the full-text
    corecore