8 research outputs found

    Measurements and Information in Spin Foam Models

    Full text link
    We present a problem relating measurements and information theory in spin foam models. In the three dimensional case of quantum gravity we can compute probabilities of spin network graphs and study the behaviour of the Shannon entropy associated to the corresponding information. We present a general definition, compute the Shannon entropy of some examples, and find some interesting inequalities.Comment: 15 pages, 3 figures. Improved versio

    Localization of N=4 Superconformal Field Theory on S^1 x S^3 and Index

    Full text link
    We provide the geometrical meaning of the N=4{\cal N}=4 superconformal index. With this interpretation, the N=4{\cal N}=4 superconformal index can be realized as the partition function on a Scherk-Schwarz deformed background. We apply the localization method in TQFT to compute the deformed partition function since the deformed action can be written as a δϵ\delta_\epsilon-exact form. The critical points of the deformed action turn out to be the space of flat connections which are, in fact, zero modes of the gauge field. The one-loop evaluation over the space of flat connections reduces to the matrix integral by which the N=4{\cal N}=4 superconformal index is expressed.Comment: 42+1 pages, 2 figures, JHEP style: v1.2.3 minor corrections, v4 major revision, conclusions essentially unchanged, v5 published versio

    Hamiltonian dynamics on convex symplectic manifolds

    Get PDF
    We study the dynamics of Hamiltonian diffeomorphisms on convex symplectic manifolds. To this end we first establish an explicit isomorphism between the Floer homology and the Morse homology of such a manifold, and then use this isomorphism to construct a biinvariant metric on the group of compactly supported Hamiltonian diffeomorphisms analogous to the metrics constructed by Viterbo, Schwarz and Oh. These tools are then applied to prove and reprove results in Hamiltonian dynamics. Our applications comprise a uniform lower estimate for the slow entropy of a compactly supported Hamiltonian diffeomorphism, the existence of infinitely many non-trivial periodic points of a compactly supported Hamiltonian diffeomorphism of a subcritical Stein manifold, new cases of the Weinstein conjecture, and, most noteworthy, new existence results for closed trajectories of a charge in a magnetic field on almost all small energy levels. We shall also obtain some new Lagrangian intersection results. © 2007 The Hebrew University of Jerusalem.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Floer Homologies, with Applications

    No full text
    corecore