3 research outputs found

    C-Terminal Binding Protein 2 Is a Novel Tumor Suppressor Targeting the Myc-Irf4 axis in Multiple Myeloma

    Get PDF
    Multiple myeloma (MM) cells are addicted to MYC and its direct transactivation targets IRF4 for proliferation and survival. MYC and IRF4 are still considered undruggable, as most small-molecule inhibitors suffer from low potency, suboptimal pharmacokinetic properties, and undesirable off-target effects. Indirect inhibition of MYC/IRF4 emerges as a therapeutic vulnerability in MM. Here, we uncovered an unappreciated tumor-suppressive role of C-terminal binding protein 2 (CTBP2) in MM via strong inhibition of the MYC-IRF4 axis. In contrast to epithelial cancers, CTBP2 is frequently downregulated in MM, in association with shortened survival, hyperproliferative features, and adverse clinical outcomes. Restoration of CTBP2 exhibited potent antitumor effects against MM in vitro and in vivo, with marked repression of the MYC-IRF4 network genes. Mechanistically, CTBP2 impeded the transcription of MYC and IRF4 by histone H3 lysine 27 deacetylation (H3K27ac) and indirectly via activation of the MYC repressor IFIT3. In addition, activation of the interferon gene signature by CTBP2 suggested its concomitant immunomodulatory role in MM. Epigenetic studies have revealed the contribution of polycomb-mediated silencing and DNA methylation to CTBP2 inactivation in MM. Notably, inhibitors of Enhance of zeste homolog 2, histone deacetylase, and DNA methyltransferase, currently under evaluation in clinical trials, were effective in restoring CTBP2 expression in MM. Our findings indicated that the loss of CTBP2 plays an essential role in myelomagenesis and deciphers an additional mechanistic link to MYC-IRF4 dysregulation in MM. We envision that the identification of novel critical regulators will facilitate the development of selective and effective approaches for treating this MYC/IRF4-addicted malignancy

    Traumatic Arteriovenous Fistula of the Scalp in the Left Temporoparietal Region with Intra- and Extracranial Blood Supply

    No full text
    Traumatic AVF of the scalp is a rare abnormal vascular disease. It is defined as a communication between the high flow arterial system and the low flow venous network, which directly connects the arterial feeding vessels of the scalp and the draining veins without an intervening capillary bed. The superficial temporal artery (STA) was involved in 90% of the cases, and 71% of the patients only had one dominant feeding STA. Here, we report the case of a rare large traumatic arteriovenous fistula (AVF) of the scalp that is fed by intra- and extracranial blood supply. The clinical and radiological features are presented, and the possible pathogenesis and surgical technique are discussed

    Mutational spectrum and prognosis in Chinese patients with prefibrotic primary myelofibrosis

    No full text
    Abstract Prefibrotic primary myelofibrosis (Pre‐PMF) has been classified as a separate entity of myeloproliferative neoplasms (MPNs). Pre‐PMF is clinically heterogeneous but a specific prognostic model is lacking. Gene mutations have emerged as useful tools for stratification of myelofibrosis patients. However, there have been limited studies comprehensively investigating the mutational spectrum and its clinicopathological significance in pre‐PMF subjects. In this study, we addressed these issues by profiling the mutation status of 141 genes in 172 Chinese MPN patients including 72 pre‐PMF cases. Our findings corroborated the clinical/molecular distinctiveness of pre‐PMF and suggested a refined risk classification strategy for this entity
    corecore