2 research outputs found

    An organizer controls the development of the "sword" : a sexually selected trait in swordtail fish

    No full text
    Male swordtail fish of the genus Xiphophorus (Poeciliidae) possess a "sword" that is composed of several colored elongated ventral fin rays of the caudal fin. The sword is a secondary sexual trait that evolved through sexual selection by female preference. To uncover the developmental mechanisms underlying the metamorphosis from a juvenile caudal fin to the sword, we have devised a transplantation protocol to assay the fate of single transplanted fin rays and their interactions with flanking rays. These experiments provide evidence for the existence of a previously unrecognized inductive signal that originates in those rays that develop into the two longest sword rays. This "sword organizer" causes adjacent fin rays to grow and become integrated into the sword and induces the development of an additional, typically pigmented sword in grafts to the dorsal part of the caudal fin. We show that the potential to develop a sword is restricted to certain parts of the caudal fin. Our findings suggest that the evolution of swords in swordtails required the acquisition of two developmental mechanisms: the establishment of signaling competence in prospective sword rays in the embryo or early larva, and its activation through androgen signaling in adult male fish

    Expression of zebrafish aldh1a3 (raldh3) and absence of aldh1a1 in teleosts

    No full text
    The vitamin A-derived morphogen retinoic acid (RA) plays important roles during the development of chordate animals. The Aldh1a-family of RA-synthesizing enzymes consists of three members, Aldh1a1 3 (Raldh1 3), that are dynamically expressed throughout development. We have searched the known teleost genomes for the presence of Raldh family members and have found that teleost fish possess orthologs of Aldh1a2 and Aldh1a3 only. Here we describe the expression of aldh1a3 in the previous termzebrafish,next term Danio rerio. Whole mount in situ hybridization shows that aldh1a3 is expressed during eye development in the retina flanking the optic stalks and later is expressed ventrally, opposite the expression domain of aldh1a2. During inner ear morphogenesis, aldh1a3 is expressed in developing sensory epithelia of the cristae and utricular macula and is specifically up-regulated in epithelial projections throughout the formation of the walls of the semicircular canals and endolymphatic duct. In contrast to the mouse inner ear, which expresses all three Raldhs, we find that only aldh1a3 is expressed in the previous termzebrafishnext term otocyst, while aldh1a2 is present in the periotic mesenchyme. During larval stages, additional expression domains of aldh1a3 appear in the anterior pituitary and the swim bladder. Our analyses provide a starting point for genetic studies to examine the role of RA in these organs and emphasize the suitability of the previous termzebrafishnext term inner ear in dissecting the contribution of RA signaling to the development of the vestibular system
    corecore