8 research outputs found
Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors
2-Thioribothymidine (s2T), a modified uridine, is found at position 54 in transfer RNAs (tRNAs) from several thermophiles; s2T stabilizes the L-shaped structure of tRNA and is essential for growth at higher temperatures. Here, we identified an ATPase (tRNA-two-thiouridine C, TtuC) required for the 2-thiolation of s2T in Thermus thermophilus and examined in vitro s2T formation by TtuC and previously identified s2T-biosynthetic proteins (TtuA, TtuB, and cysteine desulphurases). The C-terminal glycine of TtuB is first activated as an acyl-adenylate by TtuC and then thiocarboxylated by cysteine desulphurases. The sulphur atom of thiocarboxylated TtuB is transferred to tRNA by TtuA. In a ttuC mutant of T. thermophilus, not only s2T, but also molybdenum cofactor and thiamin were not synthesized, suggesting that TtuC is shared among these biosynthetic pathways. Furthermore, we found that a TtuB–TtuC thioester was formed in vitro, which was similar to the ubiquitin-E1 thioester, a key intermediate in the ubiquitin system. The results are discussed in relation to the mechanism and evolution of the eukaryotic ubiquitin system