8 research outputs found

    Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine

    Get PDF
    Ribonucleotide reductase subunits M1 (RRM1) and M2 (RRM2) are involved in the metabolism of gemcitabine (2′,2′-difluorodeoxycytidine), which is used for the treatment of nonsmall cell lung cancer. The mRNA expression of RRM1 and RRM2 in tumours from lung adenocarcinoma patients treated with docetaxel/gemcitabine was assessed and the results correlated with clinical outcome. RMM1 and RMM2 mRNA levels were determined by quantitative real-time PCR in primary tumours of previously untreated patients with advanced lung adenocarcinoma who were subsequently treated with docetaxel/gemcitabine. Amplification was successful in 42 (79%) of 53 enrolled patients. Low levels of RRM2 mRNA were associated with response to treatment (P< 0.001). Patients with the lowest expression levels of RRM1 had a significantly longer time to progression (P=0.044) and overall survival (P=0.02) than patients with the highest levels. Patients with low levels of both RRM1 and RRM2 had a significantly higher response rate (60 vs 14.2%; P=0.049), time to progression (9.9 vs 2.3 months; P=0.003) and overall survival (15.4 vs 3.6; P=0.031) than patients with high levels of both RRM1 and RRM2. Ribonucleotide reductase subunit M1 and RRM2 mRNA expression in lung adenocarcinoma tumours is associated with clinical outcome to docetaxel/gemcitabine. Prospective studies are warranted to evaluate the role of these markers in tailoring chemotherapy

    Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors

    No full text
    2-Thioribothymidine (s2T), a modified uridine, is found at position 54 in transfer RNAs (tRNAs) from several thermophiles; s2T stabilizes the L-shaped structure of tRNA and is essential for growth at higher temperatures. Here, we identified an ATPase (tRNA-two-thiouridine C, TtuC) required for the 2-thiolation of s2T in Thermus thermophilus and examined in vitro s2T formation by TtuC and previously identified s2T-biosynthetic proteins (TtuA, TtuB, and cysteine desulphurases). The C-terminal glycine of TtuB is first activated as an acyl-adenylate by TtuC and then thiocarboxylated by cysteine desulphurases. The sulphur atom of thiocarboxylated TtuB is transferred to tRNA by TtuA. In a ttuC mutant of T. thermophilus, not only s2T, but also molybdenum cofactor and thiamin were not synthesized, suggesting that TtuC is shared among these biosynthetic pathways. Furthermore, we found that a TtuB–TtuC thioester was formed in vitro, which was similar to the ubiquitin-E1 thioester, a key intermediate in the ubiquitin system. The results are discussed in relation to the mechanism and evolution of the eukaryotic ubiquitin system
    corecore