13 research outputs found
Separability and Fourier representations of density matrices
Using the finite Fourier transform, we introduce a generalization of
Pauli-spin matrices for -dimensional spaces, and the resulting set of
unitary matrices is a basis for matrices. If and H^{[ N]}=\bigotimes H^{% [ d_{k}]}, we give a
sufficient condition for separability of a density matrix relative to
the in terms of the norm of the spin coefficients of
Since the spin representation depends on the form of the tensor
product, the theory applies to both full and partial separability on a given
space % . It follows from this result that for a prescribed form of
separability, there is always a neighborhood of the normalized identity in
which every density matrix is separable. We also show that for every prime
and the generalized Werner density matrix is fully
separable if and only if
Valence bond solid formalism for d-level one-way quantum computation
The d-level or qudit one-way quantum computer (d1WQC) is described using the
valence bond solid formalism and the generalised Pauli group. This formalism
provides a transparent means of deriving measurement patterns for the
implementation of quantum gates in the computational model. We introduce a new
universal set of qudit gates and use it to give a constructive proof of the
universality of d1WQC. We characterise the set of gates that can be performed
in one parallel time step in this model.Comment: 26 pages, 9 figures. Published in Journal of Physics A: Mathematical
and Genera
Optimal Lewenstein-Sanpera Decomposition for some Biparatite Systems
It is shown that for a given bipartite density matrix and by choosing a
suitable separable set (instead of product set) on the separable-entangled
boundary, optimal Lewenstein-Sanpera (L-S) decomposition can be obtained via
optimization for a generic entangled density matrix. Based on this, We obtain
optimal L-S decomposition for some bipartite systems such as and
Bell decomposable states, generic two qubit state in Wootters
basis, iso-concurrence decomposable states, states obtained from BD states via
one parameter and three parameters local operations and classical
communications (LOCC), Werner and isotropic states, and a one
parameter state. We also obtain the optimal decomposition for
multi partite isotropic state. It is shown that in all systems
considered here the average concurrence of the decomposition is equal to the
concurrence. We also show that for some Bell decomposable states
the average concurrence of the decomposition is equal to the lower bound of the
concurrence of state presented recently in [Buchleitner et al,
quant-ph/0302144], so an exact expression for concurrence of these states is
obtained. It is also shown that for isotropic state where
decomposition leads to a separable and an entangled pure state, the average
I-concurrence of the decomposition is equal to the I-concurrence of the state.
Keywords: Quantum entanglement, Optimal Lewenstein-Sanpera decomposition,
Concurrence, Bell decomposable states, LOCC}
PACS Index: 03.65.UdComment: 31 pages, Late
Wigner Functions and Separability for Finite Systems
A discussion of discrete Wigner functions in phase space related to mutually
unbiased bases is presented. This approach requires mathematical assumptions
which limits it to systems with density matrices defined on complex Hilbert
spaces of dimension p^n where p is a prime number. With this limitation it is
possible to define a phase space and Wigner functions in close analogy to the
continuous case. That is, we use a phase space that is a direct sum of n
two-dimensional vector spaces each containing p^2 points. This is in contrast
to the more usual choice of a two-dimensional phase space containing p^(2n)
points. A useful aspect of this approach is that we can relate complete
separability of density matrices and their Wigner functions in a natural way.
We discuss this in detail for bipartite systems and present the generalization
to arbitrary numbers of subsystems when p is odd. Special attention is required
for two qubits (p=2) and our technique fails to establish the separability
property for more than two qubits.Comment: Some misprints have been corrected and a proof of the separability of
the A matrices has been adde
Multicomplementary operators via finite Fourier transform
A complete set of d+1 mutually unbiased bases exists in a Hilbert spaces of
dimension d, whenever d is a power of a prime. We discuss a simple construction
of d+1 disjoint classes (each one having d-1 commuting operators) such that the
corresponding eigenstates form sets of unbiased bases. Such a construction
works properly for prime dimension. We investigate an alternative construction
in which the real numbers that label the classes are replaced by a finite field
having d elements. One of these classes is diagonal, and can be mapped to
cyclic operators by means of the finite Fourier transform, which allows one to
understand complementarity in a similar way as for the position-momentum pair
in standard quantum mechanics. The relevant examples of two and three qubits
and two qutrits are discussed in detail.Comment: 15 pages, no figure