13 research outputs found

    Separability and Fourier representations of density matrices

    Get PDF
    Using the finite Fourier transform, we introduce a generalization of Pauli-spin matrices for dd-dimensional spaces, and the resulting set of unitary matrices S(d)S(d) is a basis for d×dd\times d matrices. If N=d1×d2×...×dbN=d_{1}\times d_{2}\times...\times d_{b} and H^{[ N]}=\bigotimes H^{% [ d_{k}]}, we give a sufficient condition for separability of a density matrix ρ\rho relative to the H[dk]H^{[ d_{k}]} in terms of the L1L_{1} norm of the spin coefficients of ρ>.\rho >. Since the spin representation depends on the form of the tensor product, the theory applies to both full and partial separability on a given space H[N]H^{[ N]}% . It follows from this result that for a prescribed form of separability, there is always a neighborhood of the normalized identity in which every density matrix is separable. We also show that for every prime pp and n>1n>1 the generalized Werner density matrix W[pn](s)W^{[ p^{n}]}(s) is fully separable if and only if s≀(1+pn−1)−1s\leq (1+p^{n-1}) ^{-1}

    Valence bond solid formalism for d-level one-way quantum computation

    Full text link
    The d-level or qudit one-way quantum computer (d1WQC) is described using the valence bond solid formalism and the generalised Pauli group. This formalism provides a transparent means of deriving measurement patterns for the implementation of quantum gates in the computational model. We introduce a new universal set of qudit gates and use it to give a constructive proof of the universality of d1WQC. We characterise the set of gates that can be performed in one parallel time step in this model.Comment: 26 pages, 9 figures. Published in Journal of Physics A: Mathematical and Genera

    Optimal Lewenstein-Sanpera Decomposition for some Biparatite Systems

    Full text link
    It is shown that for a given bipartite density matrix and by choosing a suitable separable set (instead of product set) on the separable-entangled boundary, optimal Lewenstein-Sanpera (L-S) decomposition can be obtained via optimization for a generic entangled density matrix. Based on this, We obtain optimal L-S decomposition for some bipartite systems such as 2⊗22\otimes 2 and 2⊗32\otimes 3 Bell decomposable states, generic two qubit state in Wootters basis, iso-concurrence decomposable states, states obtained from BD states via one parameter and three parameters local operations and classical communications (LOCC), d⊗dd\otimes d Werner and isotropic states, and a one parameter 3⊗33\otimes 3 state. We also obtain the optimal decomposition for multi partite isotropic state. It is shown that in all 2⊗22\otimes 2 systems considered here the average concurrence of the decomposition is equal to the concurrence. We also show that for some 2⊗32\otimes 3 Bell decomposable states the average concurrence of the decomposition is equal to the lower bound of the concurrence of state presented recently in [Buchleitner et al, quant-ph/0302144], so an exact expression for concurrence of these states is obtained. It is also shown that for d⊗dd\otimes d isotropic state where decomposition leads to a separable and an entangled pure state, the average I-concurrence of the decomposition is equal to the I-concurrence of the state. Keywords: Quantum entanglement, Optimal Lewenstein-Sanpera decomposition, Concurrence, Bell decomposable states, LOCC} PACS Index: 03.65.UdComment: 31 pages, Late

    Wigner Functions and Separability for Finite Systems

    Full text link
    A discussion of discrete Wigner functions in phase space related to mutually unbiased bases is presented. This approach requires mathematical assumptions which limits it to systems with density matrices defined on complex Hilbert spaces of dimension p^n where p is a prime number. With this limitation it is possible to define a phase space and Wigner functions in close analogy to the continuous case. That is, we use a phase space that is a direct sum of n two-dimensional vector spaces each containing p^2 points. This is in contrast to the more usual choice of a two-dimensional phase space containing p^(2n) points. A useful aspect of this approach is that we can relate complete separability of density matrices and their Wigner functions in a natural way. We discuss this in detail for bipartite systems and present the generalization to arbitrary numbers of subsystems when p is odd. Special attention is required for two qubits (p=2) and our technique fails to establish the separability property for more than two qubits.Comment: Some misprints have been corrected and a proof of the separability of the A matrices has been adde

    Multicomplementary operators via finite Fourier transform

    Full text link
    A complete set of d+1 mutually unbiased bases exists in a Hilbert spaces of dimension d, whenever d is a power of a prime. We discuss a simple construction of d+1 disjoint classes (each one having d-1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail.Comment: 15 pages, no figure

    Body Composition and Skeletal Health: Too Heavy? Too Thin?

    No full text
    corecore